File size: 16,843 Bytes
cacafc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import os
import json
import pickle
from argparse import ArgumentParser
from typing import List, Tuple, Dict

import clip
import numpy as np
import torch
import torch.nn.functional as F
from clip.model import CLIP
from torch.utils.data import DataLoader
from tqdm import tqdm

from data_utils import PROJECT_ROOT, targetpad_transform
from loader import CIRRDataset, CIRCODataset
from encode_with_pseudo_tokens import encode_with_pseudo_tokens, encode_with_pseudo_tokens_HF
from models import build_text_encoder, Phi, PIC2WORD
from utils import extract_image_features, device, collate_fn, extract_pseudo_tokens_with_phi


@torch.no_grad()
def cirr_generate_test_submission_file(dataset_path: str, image_encoder, text_encoder, ref_names_list: List[str],
                                       pseudo_tokens: torch.Tensor, preprocess: callable, submission_name: str) -> None:
    """
    Generate the test submission file for the CIRR dataset given the pseudo tokens
    """

    # Load the CLIP model
    #clip_model, _ = clip.load(clip_model_name, device=device, jit=False)
    #clip_model = clip_model.float().eval()

    # Compute the index features
    classic_test_dataset = CIRRDataset(dataset_path, 'test1', 'classic', preprocess)
    index_features, index_names = extract_image_features(classic_test_dataset, image_encoder)

    relative_test_dataset = CIRRDataset(dataset_path, 'test1', 'relative', preprocess)

    # Get the predictions dicts
    pairid_to_retrieved_images, pairid_to_group_retrieved_images = \
        cirr_generate_test_dicts(relative_test_dataset, text_encoder, index_features, index_names,
                                 ref_names_list, pseudo_tokens)

    submission = {
        'version': 'rc2',
        'metric': 'recall'
    }
    group_submission = {
        'version': 'rc2',
        'metric': 'recall_subset'
    }

    submission.update(pairid_to_retrieved_images)
    group_submission.update(pairid_to_group_retrieved_images)

    submissions_folder_path = os.path.join('./submission', 'cirr')
    os.makedirs(submissions_folder_path, exist_ok=True)

    with open(os.path.join(submissions_folder_path, f"{submission_name}.json"), 'w+') as file:
        json.dump(submission, file, sort_keys=True)

    with open(os.path.join(submissions_folder_path, f"subset_{submission_name}.json"), 'w+') as file:
        json.dump(group_submission, file, sort_keys=True)


def cirr_generate_test_dicts(relative_test_dataset: CIRRDataset, clip_model, index_features: torch.Tensor,
                             index_names: List[str], ref_names_list: List[str], pseudo_tokens: List[str]) \
        -> Tuple[Dict[str, List[str]], Dict[str, List[str]]]:
    """
    Generate the test submission dicts for the CIRR dataset given the pseudo tokens
    """

    # Get the predicted features
    predicted_features, reference_names, pairs_id, group_members = \
        cirr_generate_test_predictions(clip_model, relative_test_dataset, ref_names_list, pseudo_tokens)

    print(f"Compute CIRR prediction dicts")

    # Normalize the index features
    index_features = index_features.to(device)
    index_features = F.normalize(index_features, dim=-1).float()

    # Compute the distances and sort the results
    distances = 1 - predicted_features @ index_features.T
    sorted_indices = torch.argsort(distances, dim=-1).cpu()
    sorted_index_names = np.array(index_names)[sorted_indices]

    # Delete the reference image from the results
    reference_mask = torch.tensor(
        sorted_index_names != np.repeat(np.array(reference_names), len(index_names)).reshape(len(sorted_index_names),
                                                                                             -1))
    sorted_index_names = sorted_index_names[reference_mask].reshape(sorted_index_names.shape[0],
                                                                    sorted_index_names.shape[1] - 1)
    # Compute the subset predictions
    group_members = np.array(group_members)
    group_mask = (sorted_index_names[..., None] == group_members[:, None, :]).sum(-1).astype(bool)
    sorted_group_names = sorted_index_names[group_mask].reshape(sorted_index_names.shape[0], -1)

    # Generate prediction dicts
    pairid_to_retrieved_images = {str(int(pair_id)): prediction[:50].tolist() for (pair_id, prediction) in
                                  zip(pairs_id, sorted_index_names)}
    pairid_to_group_retrieved_images = {str(int(pair_id)): prediction[:3].tolist() for (pair_id, prediction) in
                                        zip(pairs_id, sorted_group_names)}

    return pairid_to_retrieved_images, pairid_to_group_retrieved_images


def cirr_generate_test_predictions(clip_model, relative_test_dataset: CIRRDataset, ref_names_list: List[str],
                                   pseudo_tokens: torch.Tensor) -> \
        Tuple[torch.Tensor, List[str], List[str], List[List[str]]]:
    """
    Generate the test prediction features for the CIRR dataset given the pseudo tokens
    """

    # Create the test dataloader
    relative_test_loader = DataLoader(dataset=relative_test_dataset, batch_size=32, num_workers=10,
                                      pin_memory=False)

    predicted_features_list = []
    reference_names_list = []
    pair_id_list = []
    group_members_list = []

    # Compute the predictions
    for batch in tqdm(relative_test_loader):
        reference_names = batch['reference_name']
        pairs_id = batch['pair_id']
        relative_captions = batch['relative_caption']
        group_members = batch['group_members']

        group_members = np.array(group_members).T.tolist()

        input_captions = [
            f"a photo of $ that {rel_caption}" for rel_caption in relative_captions]

        batch_tokens = torch.vstack([pseudo_tokens[ref_names_list.index(ref)].unsqueeze(0) for ref in reference_names])
        tokenized_input_captions = clip.tokenize(input_captions, context_length=77).to(device)
        text_features = encode_with_pseudo_tokens_HF(clip_model, tokenized_input_captions, batch_tokens)

        predicted_features = F.normalize(text_features)

        predicted_features_list.append(predicted_features)
        reference_names_list.extend(reference_names)
        pair_id_list.extend(pairs_id)
        group_members_list.extend(group_members)

    predicted_features = torch.vstack(predicted_features_list)

    return predicted_features, reference_names_list, pair_id_list, group_members_list


@torch.no_grad()
def circo_generate_test_submission_file(dataset_path: str, image_encoder, text_encoder, ref_names_list: List[str],
                                        pseudo_tokens: torch.Tensor, preprocess: callable,
                                        submission_name: str) -> None:
    """
    Generate the test submission file for the CIRCO dataset given the pseudo tokens
    """

    # Load the CLIP model
    #clip_model, _ = clip.load(clip_model_name, device=device, jit=False)
    #clip_model = clip_model.float().eval().requires_grad_(False)

    # Compute the index features
    classic_test_dataset = CIRCODataset(dataset_path, 'test', 'classic', preprocess)
    index_features, index_names = extract_image_features(classic_test_dataset, image_encoder)

    relative_test_dataset = CIRCODataset(dataset_path, 'test', 'relative', preprocess)

    # Get the predictions dict
    queryid_to_retrieved_images = circo_generate_test_dict(relative_test_dataset, text_encoder, index_features,
                                                           index_names, ref_names_list, pseudo_tokens)

    submissions_folder_path = os.path.join('./submission', 'circo')
    os.makedirs(submissions_folder_path, exist_ok=True)

    with open(os.path.join(submissions_folder_path, f"{submission_name}.json"), 'w+') as file:
        json.dump(queryid_to_retrieved_images, file, sort_keys=True)


def circo_generate_test_predictions(clip_model, relative_test_dataset: CIRCODataset, ref_names_list: List[str],
                                    pseudo_tokens: torch.Tensor) -> [torch.Tensor, List[List[str]]]:
    """
    Generate the test prediction features for the CIRCO dataset given the pseudo tokens
    """

    # Create the test dataloader
    relative_test_loader = DataLoader(dataset=relative_test_dataset, batch_size=32, num_workers=10,
                                      pin_memory=False, collate_fn=collate_fn, shuffle=False)

    predicted_features_list = []
    query_ids_list = []

    # Compute the predictions
    for batch in tqdm(relative_test_loader):
        reference_names = batch['reference_name']
        relative_captions = batch['relative_caption']
        query_ids = batch['query_id']

        input_captions = [f"a photo of $ that {caption}" for caption in relative_captions]
        batch_tokens = torch.vstack([pseudo_tokens[ref_names_list.index(ref)].unsqueeze(0) for ref in reference_names])
        tokenized_input_captions = clip.tokenize(input_captions, context_length=77).to(device)
        text_features = encode_with_pseudo_tokens_HF(clip_model, tokenized_input_captions, batch_tokens)
        predicted_features = F.normalize(text_features)

        predicted_features_list.append(predicted_features)
        query_ids_list.extend(query_ids)

    predicted_features = torch.vstack(predicted_features_list)
    return predicted_features, query_ids_list


def circo_generate_test_dict(relative_test_dataset: CIRCODataset, clip_model, index_features: torch.Tensor,
                             index_names: List[str], ref_names_list: List[str], pseudo_tokens: torch.Tensor) \
        -> Dict[str, List[str]]:
    """
    Generate the test submission dicts for the CIRCO dataset given the pseudo tokens
    """

    # Get the predicted features
    predicted_features, query_ids = circo_generate_test_predictions(clip_model, relative_test_dataset,
                                                                    ref_names_list, pseudo_tokens)

    # Normalize the features
    index_features = index_features.float().to(device)
    index_features = F.normalize(index_features, dim=-1)

    # Compute the similarity
    similarity = predicted_features @ index_features.T
    sorted_indices = torch.topk(similarity, dim=-1, k=50).indices.cpu()
    sorted_index_names = np.array(index_names)[sorted_indices]

    # Generate prediction dicts
    queryid_to_retrieved_images = {query_id: query_sorted_names[:50].tolist() for
                                   (query_id, query_sorted_names) in zip(query_ids, sorted_index_names)}

    return queryid_to_retrieved_images


def main():
    parser = ArgumentParser()
    parser.add_argument("--submission-name", type=str, required=True, help="Filename of the generated submission file")
    parser.add_argument("--exp-name", type=str, help="Experiment to evaluate")
    parser.add_argument("--dataset", type=str, required=True, choices=['cirr', 'circo'], help="Dataset to use")
    parser.add_argument("--dataset-path", type=str, help="Path to the dataset", required=True)
    parser.add_argument("--eval-type", type=str, choices=['oti', 'phi', 'searle', 'searle-xl', 'pic2word'], required=True,
                        help="If 'oti' evaluate directly using the inverted oti pseudo tokens, "
                             "if 'phi' predicts the pseudo tokens using the phi network, "
                             "if 'searle' uses the pre-trained SEARLE model to predict the pseudo tokens, "
                             "if 'searle-xl' uses the pre-trained SEARLE-XL model to predict the pseudo tokens")

    parser.add_argument("--preprocess-type", default="clip", type=str, choices=['clip', 'targetpad'],
                        help="Preprocess pipeline to use")
    parser.add_argument("--phi-checkpoint-name", type=str,
                        help="Phi checkpoint to use, needed when using phi, e.g. 'phi_20.pt'")

    parser.add_argument("--clip_model_name", default="giga", type=str)
    parser.add_argument("--cache_dir", default="./hf_models", type=str)

    parser.add_argument("--l2_normalize", action="store_true", help="Whether or not to use l2 normalization")

    args = parser.parse_args()

    if args.eval_type == 'oti':
        experiment_path = PROJECT_ROOT / 'data' / "oti_pseudo_tokens" / args.dataset.lower() / 'test' / args.exp_name

        with open(experiment_path / 'hyperparameters.json') as f:
            hyperparameters = json.load(f)

        pseudo_tokens = torch.load(experiment_path / 'ema_oti_pseudo_tokens.pt', map_location=device)
        with open(experiment_path / 'image_names.pkl', 'rb') as f:
            ref_names_list = pickle.load(f)

        clip_model_name = hyperparameters['clip_model_name']
        clip_model, clip_preprocess = clip.load(clip_model_name, device='cpu', jit=False)

        if args.preprocess_type == 'targetpad':
            print('Target pad preprocess pipeline is used')
            preprocess = targetpad_transform(1.25, clip_model.visual.input_resolution)
        elif args.preprocess_type == 'clip':
            print('CLIP preprocess pipeline is used')
            preprocess = clip_preprocess
        else:
            raise ValueError("Preprocess type not supported")


    elif args.eval_type in ['phi', 'searle', 'searle-xl', 'pic2word']:
        if args.eval_type == 'phi':
            args.mixed_precision = 'fp16'
            image_encoder, clip_preprocess, text_encoder, tokenizer = build_text_encoder(args)

            phi = Phi(input_dim=text_encoder.config.projection_dim,
                      hidden_dim=text_encoder.config.projection_dim * 4,
                      output_dim=text_encoder.config.hidden_size, dropout=0.5).to(
                device)

            phi.load_state_dict(
                    torch.load(args.phi_checkpoint_name, map_location=device)[
                    phi.__class__.__name__])
            phi = phi.eval()

        elif args.eval_type == 'pic2word':
            args.mixed_precision = 'fp16'
            image_encoder, clip_preprocess, text_encoder, tokenizer = build_text_encoder(args)

            phi = PIC2WORD(embed_dim=text_encoder.config.projection_dim,
                           output_dim=text_encoder.config.hidden_size,
                           ).to(device)
            sd = torch.load(args.phi_checkpoint_name, map_location=device)['state_dict_img2text']
            sd = {k[len('module.'):]: v for k, v in sd.items()}
            phi.load_state_dict(sd)
            phi = phi.eval()

        else:  # searle or searle-xl
            if args.eval_type == 'searle':
                clip_model_name = 'ViT-B/32'
            else:  # args.eval_type == 'searle-xl':
                clip_model_name = 'ViT-L/14'
            phi, _ = torch.hub.load(repo_or_dir='miccunifi/SEARLE', model='searle', source='github',
                                    backbone=clip_model_name)

            phi = phi.to(device).eval()
            clip_model, clip_preprocess = clip.load(clip_model_name, device=device, jit=False)

        if args.preprocess_type == 'targetpad':
            print('Target pad preprocess pipeline is used')
            preprocess = targetpad_transform(1.25, clip_model.visual.input_resolution)
        elif args.preprocess_type == 'clip':
            print('CLIP preprocess pipeline is used')
            preprocess = clip_preprocess
        else:
            raise ValueError("Preprocess type not supported")

        if args.dataset.lower() == 'cirr':
            relative_test_dataset = CIRRDataset(args.dataset_path, 'test', 'relative', preprocess, no_duplicates=True)
        elif args.dataset.lower() == 'circo':
            relative_test_dataset = CIRCODataset(args.dataset_path, 'test', 'relative', preprocess)
        else:
            raise ValueError("Dataset not supported")

        #clip_model = clip_model.float().to(device)
        image_encoder = image_encoder.float().to(device)
        text_encoder = text_encoder.float().to(device)
        pseudo_tokens, ref_names_list = extract_pseudo_tokens_with_phi(image_encoder, phi, relative_test_dataset, args)
        pseudo_tokens = pseudo_tokens.to(device)
    else:
        raise ValueError("Eval type not supported")

    print(f"Eval type = {args.eval_type} \t exp name = {args.exp_name} \t")

    if args.dataset == 'cirr':
        cirr_generate_test_submission_file(args.dataset_path, image_encoder, text_encoder, ref_names_list, pseudo_tokens,
                                           preprocess, args.submission_name)
    elif args.dataset == 'circo':
        circo_generate_test_submission_file(args.dataset_path, image_encoder, text_encoder, ref_names_list, pseudo_tokens,
                                            preprocess, args.submission_name)

    else:
        raise ValueError("Dataset not supported")


if __name__ == '__main__':
    main()