File size: 27,189 Bytes
cacafc1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
'''
LinCIR
Copyright (c) 2023-present NAVER Corp.
CC BY-NC-4.0 (https://creativecommons.org/licenses/by-nc/4.0/)
'''
import os
import functools
import glob
import random
import json
from pathlib import Path
from typing import List, Optional, Union, Dict, Literal
import PIL
import PIL.Image
import torch
from torch.utils.data import Dataset
import webdataset as wds
import spacy
import numpy as np
import sng_parser
import datasets


def extract_keywords(spacy_nlp, caption):
    candidates = []
    nlp_caption = caption

    doc = spacy_nlp(nlp_caption)

    tmp = ''
    for word in doc:
        if word.pos_ == 'ADJ':
            if tmp == '':
                tmp += word.text
            else:
                tmp += ' ' + word.text
        elif word.pos_ == 'NOUN' or word.pos_ == 'PROPN':
            if tmp == '':
                tmp += word.text
            else:
                tmp += ' ' + word.text
        else:
            if tmp != '':
                candidates.append(tmp)
            tmp = ''
    if tmp != '':
        candidates.append(tmp)

    candidates = list(set(candidates))

    return candidates


def extract_keywords_spacy(spacy_nlp, caption):
    sequences = []
    current_sequence = []
    doc = spacy_nlp(caption)
    for token in doc:
        # Check if the token is a noun, proper noun, or adjective
        if token.pos_ in ['NOUN', 'PROPN', 'ADJ', 'DET']:
            current_sequence.append(token.text)
        else:
            # If we encounter a token that's not one of the desired POS and current_sequence is not empty
            if current_sequence:
                sequences.append(" ".join(current_sequence))
                current_sequence = []

    # Adding any remaining sequence after the loop
    if current_sequence:
        sequences.append(" ".join(current_sequence))

    return sequences


def extract_sng(caption):
    graph = sng_parser.parse(caption)
    entities = [x['head'] for i, x in enumerate(graph['entities'])]
    relations = [{'subject': entities[x['subject']], 'object': entities[x['object']], 'relation': x['relation']} for x in graph['relations']]
    return entities, relations


def clean_caption(caption, tokenizer):
    if caption is None:
        caption = ''
    if '<PERSON>' in caption: # to handle with GCC12M
        caption = caption.replace('<PERSON>', 'person')
    caption = caption.lower().replace('$', '').strip()
    tokens = tokenizer.encode(caption, padding='longest', return_tensors='pt')
    if tokens.shape[1] > 77:
        caption = tokenizer.batch_decode(tokens[:,1:76])[0]
    return caption


def preprocess_precomputed_base(sample, spacy_nlp, keywords_list, tokenizer):
    '''
    'image_feature.npy','json'
    '''
    image_feature, image_feature_giga, meta = sample

    caption = clean_caption(meta['source_caption'], tokenizer)

    keywords = ['']
    try:
        keywords = extract_keywords_spacy(spacy_nlp, caption)
    except Exception as e:
        #print(e)
        pass

    # for keywords
    indicator = 1
    replaced_caption = caption
    for keyword in keywords:
        if keyword != '' and keyword in caption:
            replaced_caption = replaced_caption.replace(keyword, '[$]')
        else:
            tmp_keywords = caption.split(' ')
            if len(tmp_keywords) > 0:
                selected_keywords = random.sample(tmp_keywords, k=min(int(len(tmp_keywords) * 1.0), 1))
                for selected_keyword in selected_keywords:
                    replaced_caption = replaced_caption.replace(selected_keyword, '[$]')
            else:
                replaced_caption = f'a photo of [$] that {caption}'
                indicator = 0
            break

    token_dict = tokenizer(text=caption, return_tensors='pt', padding='max_length', truncation=True)
    tokens, attention_mask = token_dict['input_ids'][0], token_dict['attention_mask'][0]

    replaced_token_dict = tokenizer(text=replaced_caption, return_tensors='pt', padding='max_length', truncation=True)
    replaced_tokens, replaced_attention_mask = replaced_token_dict['input_ids'][0], replaced_token_dict['attention_mask'][0]

    replaced_tokens = torch.where(replaced_tokens == 49408,
                                  torch.ones_like(replaced_tokens) * 259,
                                  replaced_tokens)

    if 259 not in replaced_tokens:
        replaced_caption = 'a photo of [$]'
        replaced_token_dict = tokenizer(text=replaced_caption, return_tensors='pt', padding='max_length', truncation=True)
        replaced_tokens, replaced_attention_mask = replaced_token_dict['input_ids'][0], replaced_token_dict['attention_mask'][0]

        replaced_tokens = torch.where(replaced_tokens == 49408,
                                      torch.ones_like(replaced_tokens) * 259,
                                      replaced_tokens)
        indicator = 0

    new_sample = [tokens, replaced_tokens, indicator]

    return tuple(new_sample)


class CaptionDataset(Dataset):
    def __init__(self, captions, tokenizer, spacy_nlp):
        self.captions = captions
        self.tokenizer = tokenizer
        self.spacy_nlp = spacy_nlp

    def __len__(self):
        return len(self.captions)

    def __getitem__(self, idx):
        caption = self.captions[idx]

        caption = clean_caption(caption, self.tokenizer)

        keywords = [""]
        try:
            keywords = extract_keywords_spacy(self.spacy_nlp, caption)
        except Exception as e:
            #print(e)
            pass

        # for keywords
        indicator = 1
        replaced_caption = caption

        if len(keywords) == 0:
            keywords = [""]

        for keyword in keywords:
            if keyword != '' and keyword in caption:
                replaced_caption = replaced_caption.replace(keyword, '[$]')
            else:
                tmp_keywords = caption.split(' ')
                if len(tmp_keywords) > 0:
                    selected_keywords = random.sample(tmp_keywords, k=min(int(len(tmp_keywords) * 1.0), 1))
                    for selected_keyword in selected_keywords:
                        replaced_caption = replaced_caption.replace(selected_keyword, '[$]')
                else:
                    replaced_caption = f'a photo of [$] that {caption}'
                    indicator = 0
                break

        token_dict = self.tokenizer(text=caption, return_tensors='pt', padding='max_length', truncation=True)
        tokens, attention_mask = token_dict['input_ids'][0], token_dict['attention_mask'][0]

        replaced_token_dict = self.tokenizer(text=replaced_caption, return_tensors='pt', padding='max_length', truncation=True)
        replaced_tokens, replaced_attention_mask = replaced_token_dict['input_ids'][0], replaced_token_dict['attention_mask'][0]

        replaced_tokens = torch.where(replaced_tokens == 49408,
                                      torch.ones_like(replaced_tokens) * 259,
                                      replaced_tokens)

        if 259 not in replaced_tokens:
            replaced_caption = 'a photo of [$]'
            replaced_token_dict = self.tokenizer(text=replaced_caption, return_tensors='pt', padding='max_length', truncation=True)
            replaced_tokens, replaced_attention_mask = replaced_token_dict['input_ids'][0], replaced_token_dict['attention_mask'][0]

            replaced_tokens = torch.where(replaced_tokens == 49408,
                                          torch.ones_like(replaced_tokens) * 259,
                                          replaced_tokens)
            indicator = 0

        return tokens, replaced_tokens, indicator


def build_loader(args, tokenizer, accelerator):
    data_names = {'dataset1': 'dangne/gcc_caption_only',
                  'dataset2': 'FredZhang7/stable-diffusion-prompts-2.47M',
                  'dataset3': 'Geonmo/midjourney-prompts-only',
                  }

    for k, v in data_names.items():
        if not os.path.exists(os.path.join('./datasets', k)):
            if accelerator.is_main_process:
                print('Downloading captions is required')
                db = datasets.load_dataset(v, cache_dir=os.path.join('./datasets', k))

    captions = []
    for k, v in data_names.items():
        db = datasets.load_dataset(v, cache_dir=os.path.join('./datasets', k))
        captions += db['train']['text']

    dataset = CaptionDataset(captions, tokenizer, spacy.load('en_core_web_sm'))
    data_loader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size, num_workers=args.num_workers, drop_last=True, shuffle=True)

    return data_loader


class FashionIQDataset(Dataset):
    """
    Copy-paste from https://github.com/miccunifi/SEARLE/blob/main/src/datasets.py
    FashionIQ dataset class for PyTorch.
    The dataset can be used in 'relative' or 'classic' mode:
        - In 'classic' mode the dataset yield :a dict with keys ['image', 'image_name']
        - In 'relative' mode the dataset yield dict with keys:
            - ['reference_image', 'reference_name', 'target_image', 'target_name', 'relative_captions'] when
             split in ['train', 'val']
            - ['reference_image', 'reference_name', 'relative_captions'] when split == test
    """

    def __init__(self, dataset_path: Union[Path, str], split: Literal['train', 'val', 'test'], dress_types: List[str],
                 mode: Literal['relative', 'classic'], preprocess: callable, no_duplicates: Optional[bool] = False):
        """
        :param dataset_path: path to the FashionIQ dataset
        :param split: dataset split, should be in ['train, 'val', 'test']
        :param dress_types: list of fashionIQ categories, each category should be in ['dress', 'shirt', 'toptee']
        :param mode: dataset mode, should be in ['relative', 'classic']:
            - In 'classic' mode the dataset yield a dict with keys ['image', 'image_name']
            - In 'relative' mode the dataset yield dict with keys:
                - ['reference_image', 'reference_name', 'target_image', 'target_name', 'relative_captions']
                 when split in ['train', 'val']
                - ['reference_image', 'reference_name', 'relative_captions'] when split == test
        :param preprocess: function which preprocesses the image
        :param no_duplicates: if True, the dataset will not yield duplicate images in relative mode, does not affect classic mode
        """
        dataset_path = Path(dataset_path)
        self.dataset_path = dataset_path
        self.mode = mode
        self.dress_types = dress_types
        self.split = split
        self.no_duplicates = no_duplicates

        # Validate the inputs
        if mode not in ['relative', 'classic']:
            raise ValueError("mode should be in ['relative', 'classic']")
        if split not in ['test', 'train', 'val']:
            raise ValueError("split should be in ['test', 'train', 'val']")
        for dress_type in dress_types:
            if dress_type not in ['dress', 'shirt', 'toptee']:
                raise ValueError("dress_type should be in ['dress', 'shirt', 'toptee']")

        self.preprocess = preprocess

        # get triplets made by (reference_image, target_image, a pair of relative captions)
        self.triplets: List[dict] = []
        for dress_type in dress_types:
            with open(dataset_path / 'captions' / f'cap.{dress_type}.{split}.json') as f:
                self.triplets.extend(json.load(f))

        # Remove duplicats from
        if self.no_duplicates:
            seen = set()
            new_triplets = []
            for triplet in self.triplets:
                if triplet['candidate'] not in seen:
                    seen.add(triplet['candidate'])
                    new_triplets.append(triplet)
            self.triplets = new_triplets

        # get the image names
        self.image_names: list = []
        for dress_type in dress_types:
            with open(dataset_path / 'image_splits' / f'split.{dress_type}.{split}.json') as f:
                self.image_names.extend(json.load(f))

        print(f"FashionIQ {split} - {dress_types} dataset in {mode} mode initialized")

    def __getitem__(self, index) -> dict:
        try:
            if self.mode == 'relative':
                relative_captions = self.triplets[index]['captions']
                reference_name = self.triplets[index]['candidate']

                if self.split in ['train', 'val']:
                    reference_image_path = self.dataset_path / 'images' / f"{reference_name}.jpg"
                    reference_image = self.preprocess(PIL.Image.open(reference_image_path), return_tensors='pt')['pixel_values'][0]
                    target_name = self.triplets[index]['target']
                    target_image_path = self.dataset_path / 'images' / f"{target_name}.jpg"
                    target_image = self.preprocess(PIL.Image.open(target_image_path), return_tensors='pt')['pixel_values'][0]

                    return {
                        'reference_image': reference_image,
                        'reference_name': reference_name,
                        'target_image': target_image,
                        'target_name': target_name,
                        'relative_captions': relative_captions
                    }

                elif self.split == 'test':
                    reference_image_path = self.dataset_path / 'images' / f"{reference_name}.jpg"
                    reference_image = self.preprocess(PIL.Image.open(reference_image_path), return_tensors='pt')['pixel_values'][0]

                    return {
                        'reference_image': reference_image,
                        'reference_name': reference_name,
                        'relative_captions': relative_captions
                    }

            elif self.mode == 'classic':
                image_name = self.image_names[index]
                image_path = self.dataset_path / 'images' / f"{image_name}.jpg"
                image = self.preprocess(PIL.Image.open(image_path), return_tensors='pt')['pixel_values'][0]

                return {
                    'image': image,
                    'image_name': image_name
                }

            else:
                raise ValueError("mode should be in ['relative', 'classic']")
        except Exception as e:
            print(f"Exception: {e}")

    def __len__(self):
        if self.mode == 'relative':
            return len(self.triplets)
        elif self.mode == 'classic':
            return len(self.image_names)
        else:
            raise ValueError("mode should be in ['relative', 'classic']")


class CIRRDataset(Dataset):
    """
   Copy-paste from https://github.com/miccunifi/SEARLE/blob/main/src/datasets.py
   CIRR dataset class for PyTorch dataloader.
   The dataset can be used in 'relative' or 'classic' mode:
        - In 'classic' mode the dataset yield a dict with keys ['image', 'image_name']
        - In 'relative' mode the dataset yield dict with keys:
            - ['reference_image', 'reference_name', 'target_image', 'target_name', 'relative_caption', 'group_members']
             when split in ['train', 'val']
            - ['reference_image', 'reference_name' 'relative_caption', 'group_members', 'pair_id'] when split == test
    """

    def __init__(self, dataset_path: Union[Path, str], split: Literal['train', 'val', 'test'],
                 mode: Literal['relative', 'classic'], preprocess: callable, no_duplicates: Optional[bool] = False):
        """
        :param dataset_path: path to the CIRR dataset
        :param split: dataset split, should be in ['train', 'val', 'test']
        :param mode: dataset mode, should be in ['relative', 'classic']:
                - In 'classic' mode the dataset yield a dict with keys ['image', 'image_name']
                - In 'relative' mode the dataset yield dict with keys:
                    - ['reference_image', 'reference_name', 'target_image', 'target_name', 'relative_caption',
                    'group_members'] when split in ['train', 'val']
                    - ['reference_image', 'reference_name' 'relative_caption', 'group_members', 'pair_id'] when split == test
        :param preprocess: function which preprocesses the image
        :param no_duplicates: if True, the dataset will not yield duplicate images in relative mode, does not affect classic mode
        """
        dataset_path = Path(dataset_path)
        self.dataset_path = dataset_path
        self.preprocess = preprocess
        self.mode = mode
        self.split = split
        self.no_duplicates = no_duplicates

        if split == "test":
            split = "test1"
            self.split = "test1"

        # Validate inputs
        if split not in ['test1', 'train', 'val']:
            raise ValueError("split should be in ['test1', 'train', 'val']")
        if mode not in ['relative', 'classic']:
            raise ValueError("mode should be in ['relative', 'classic']")

        # get triplets made by (reference_image, target_image, relative caption)
        with open(dataset_path / 'cirr' / 'captions' / f'cap.rc2.{split}.json') as f:
            self.triplets = json.load(f)

        # Remove duplicates from triplets
        if self.no_duplicates:
            seen = set()
            new_triplets = []
            for triplet in self.triplets:
                if triplet['reference'] not in seen:
                    seen.add(triplet['reference'])
                    new_triplets.append(triplet)
            self.triplets = new_triplets

        # get a mapping from image name to relative path
        with open(dataset_path / 'cirr' / 'image_splits' / f'split.rc2.{split}.json') as f:
            self.name_to_relpath = json.load(f)

        print(f"CIRR {split} dataset in {mode} mode initialized")

    def __getitem__(self, index) -> dict:
        try:
            if self.mode == 'relative':
                group_members = self.triplets[index]['img_set']['members']
                reference_name = self.triplets[index]['reference']
                relative_caption = self.triplets[index]['caption']

                if self.split in ['train', 'val']:
                    reference_image_path = self.dataset_path / self.name_to_relpath[reference_name]
                    reference_image = self.preprocess(PIL.Image.open(reference_image_path), return_tensors='pt')['pixel_values'][0]
                    target_hard_name = self.triplets[index]['target_hard']
                    target_image_path = self.dataset_path / self.name_to_relpath[target_hard_name]
                    target_image = self.preprocess(PIL.Image.open(target_image_path), return_tensors='pt')['pixel_values'][0]

                    return {
                        'reference_image': reference_image,
                        'reference_name': reference_name,
                        'target_image': target_image,
                        'target_name': target_hard_name,
                        'relative_caption': relative_caption,
                        'group_members': group_members
                    }

                elif self.split == 'test1':
                    pair_id = self.triplets[index]['pairid']
                    reference_image_path = self.dataset_path / self.name_to_relpath[reference_name]
                    reference_image = self.preprocess(PIL.Image.open(reference_image_path), return_tensors='pt')['pixel_values'][0]
                    return {
                        'reference_image': reference_image,
                        'reference_name': reference_name,
                        'relative_caption': relative_caption,
                        'group_members': group_members,
                        'pair_id': pair_id
                    }

            elif self.mode == 'classic':
                image_name = list(self.name_to_relpath.keys())[index]
                image_path = self.dataset_path / self.name_to_relpath[image_name]
                im = PIL.Image.open(image_path)
                image = self.preprocess(im, return_tensors='pt')['pixel_values'][0]

                return {
                    'image': image,
                    'image_name': image_name
                }

            else:
                raise ValueError("mode should be in ['relative', 'classic']")

        except Exception as e:
            print(f"Exception: {e}")

    def __len__(self):
        if self.mode == 'relative':
            return len(self.triplets)
        elif self.mode == 'classic':
            return len(self.name_to_relpath)
        else:
            raise ValueError("mode should be in ['relative', 'classic']")


class CIRCODataset(Dataset):
    """
    Copy-paste from https://github.com/miccunifi/SEARLE/blob/main/src/datasets.py
    CIRCO dataset class for PyTorch.
    The dataset can be used in 'relative' or 'classic' mode:
        - In 'classic' mode the dataset yield a dict with keys ['image', 'image_name']
        - In 'relative' mode the dataset yield dict with keys:
            - ['reference_image', 'reference_name', 'target_image', 'target_name', 'relative_captions', 'shared_concept',
             'gt_img_ids', 'query_id'] when split == 'val'
            - ['reference_image', 'reference_name', 'relative_captions', 'shared_concept', 'query_id'] when split == test
    """

    def __init__(self, dataset_path: Union[str, Path], split: Literal['val', 'test'],
                 mode: Literal['relative', 'classic'], preprocess: callable):
        """
        Args:
            dataset_path (Union[str, Path]): path to CIRCO dataset
            split (str): dataset split, should be in ['test', 'val']
            mode (str): dataset mode, should be in ['relative', 'classic']
            preprocess (callable): function which preprocesses the image
        """

        # Set dataset paths and configurations
        dataset_path = Path(dataset_path)
        self.mode = mode
        self.split = split
        self.preprocess = preprocess
        self.data_path = dataset_path

        # Ensure input arguments are valid
        if mode not in ['relative', 'classic']:
            raise ValueError("mode should be in ['relative', 'classic']")
        if split not in ['test', 'val']:
            raise ValueError("split should be in ['test', 'val']")

        # Load COCO images information
        with open(dataset_path / 'COCO2017_unlabeled' / "annotations" / "image_info_unlabeled2017.json", "r") as f:
            imgs_info = json.load(f)

        self.img_paths = [dataset_path / 'COCO2017_unlabeled' / "unlabeled2017" / img_info["file_name"] for img_info in
                          imgs_info["images"]]
        self.img_ids = [img_info["id"] for img_info in imgs_info["images"]]
        self.img_ids_indexes_map = {str(img_id): i for i, img_id in enumerate(self.img_ids)}

        # get CIRCO annotations
        with open(dataset_path / 'annotations' / f'{split}.json', "r") as f:
            self.annotations: List[dict] = json.load(f)

        # Get maximum number of ground truth images (for padding when loading the images)
        self.max_num_gts = 23  # Maximum number of ground truth images

        print(f"CIRCODataset {split} dataset in {mode} mode initialized")

    def get_target_img_ids(self, index) -> Dict[str, int]:
        """
        Returns the id of the target image and ground truth images for a given query

        Args:
            index (int): id of the query

        Returns:
             Dict[str, int]: dictionary containing target image id and a list of ground truth image ids
        """

        return {
            'target_img_id': self.annotations[index]['target_img_id'],
            'gt_img_ids': self.annotations[index]['gt_img_ids']
        }

    def __getitem__(self, index) -> dict:
        """
        Returns a specific item from the dataset based on the index.

        In 'classic' mode, the dataset yields a dictionary with the following keys: [img, img_id]
        In 'relative' mode, the dataset yields dictionaries with the following keys:
            - [reference_img, reference_img_id, target_img, target_img_id, relative_caption, shared_concept, gt_img_ids,
            query_id]
            if split == val
            - [reference_img, reference_img_id, relative_caption, shared_concept, query_id]  if split == test
        """

        if self.mode == 'relative':
            # Get the query id
            query_id = str(self.annotations[index]['id'])

            # Get relative caption and shared concept
            relative_caption = self.annotations[index]['relative_caption']
            shared_concept = self.annotations[index]['shared_concept']

            # Get the reference image
            reference_img_id = str(self.annotations[index]['reference_img_id'])
            reference_img_path = self.img_paths[self.img_ids_indexes_map[reference_img_id]]
            reference_img = self.preprocess(PIL.Image.open(reference_img_path), return_tensors='pt')['pixel_values'][0]

            if self.split == 'val':
                # Get the target image and ground truth images
                target_img_id = str(self.annotations[index]['target_img_id'])
                gt_img_ids = [str(x) for x in self.annotations[index]['gt_img_ids']]
                target_img_path = self.img_paths[self.img_ids_indexes_map[target_img_id]]
                target_img = self.preprocess(PIL.Image.open(target_img_path), return_tensors='pt')['pixel_values'][0]

                # Pad ground truth image IDs with zeros for collate_fn
                gt_img_ids += [''] * (self.max_num_gts - len(gt_img_ids))

                return {
                    'reference_image': reference_img,
                    'reference_name': reference_img_id,
                    'target_image': target_img,
                    'target_name': target_img_id,
                    'relative_caption': relative_caption,
                    'shared_concept': shared_concept,
                    'gt_img_ids': gt_img_ids,
                    'query_id': query_id,
                }

            elif self.split == 'test':
                return {
                    'reference_image': reference_img,
                    'reference_name': reference_img_id,
                    'relative_caption': relative_caption,
                    'shared_concept': shared_concept,
                    'query_id': query_id,
                }

        elif self.mode == 'classic':
            # Get image ID and image path
            img_id = str(self.img_ids[index])
            img_path = self.img_paths[index]

            # Preprocess image and return
            img = self.preprocess(PIL.Image.open(img_path), return_tensors='pt')['pixel_values'][0]
            return {
                'image': img,
                'image_name': img_id
            }

    def __len__(self):
        """
        Returns the length of the dataset.
        """
        if self.mode == 'relative':
            return len(self.annotations)
        elif self.mode == 'classic':
            return len(self.img_ids)
        else:
            raise ValueError("mode should be in ['relative', 'classic']")