Spaces:
Runtime error
Runtime error
''' | |
LinCIR | |
Copyright (c) 2023-present NAVER Corp. | |
CC BY-NC-4.0 (https://creativecommons.org/licenses/by-nc/4.0/) | |
''' | |
import os | |
import time | |
from argparse import ArgumentParser | |
import numpy as np | |
import torch | |
import gradio as gr | |
from clip_retrieval.clip_client import ClipClient | |
from encode_with_pseudo_tokens import encode_with_pseudo_tokens_HF | |
from models import build_text_encoder, Phi, PIC2WORD | |
import transformers | |
from huggingface_hub import hf_hub_url, cached_download | |
def parse_args(): | |
parser = ArgumentParser() | |
parser.add_argument("--lincir_ckpt_path", default=None, type=str, | |
help="The output directory where the model predictions and checkpoints will be written") | |
parser.add_argument("--pic2word_ckpt_path", default=None, type=str) | |
parser.add_argument("--cache_dir", default="./hf_models", type=str, | |
help="Path to model cache folder") | |
parser.add_argument("--clip_model_name", default="large", type=str, | |
help="CLIP model to use, e.g 'large', 'huge', 'giga'") | |
parser.add_argument("--mixed_precision", default="fp16", type=str) | |
parser.add_argument("--test_fps", action="store_true") | |
args = parser.parse_args() | |
return args | |
def load_models(args): | |
if torch.cuda.is_available(): | |
device = 'cuda:0' | |
dtype = torch.float16 | |
else: | |
device = 'cpu' | |
dtype = torch.float32 | |
clip_vision_model, clip_preprocess, clip_text_model, tokenizer = build_text_encoder(args) | |
tokenizer.add_special_tokens({'additional_special_tokens':["[$]"]}) # 49408 | |
# ours | |
phi = Phi(input_dim=clip_text_model.config.projection_dim, | |
hidden_dim=clip_text_model.config.projection_dim * 4, | |
output_dim=clip_text_model.config.hidden_size, dropout=0.0) | |
phi.eval() | |
# searle | |
phi_searle, _ = torch.hub.load(repo_or_dir='miccunifi/SEARLE', model='searle', source='github', | |
backbone='ViT-L/14') | |
phi_searle.eval() | |
# pic2word | |
phi_pic2word = PIC2WORD(embed_dim=clip_text_model.config.projection_dim, | |
output_dim=clip_text_model.config.hidden_size) | |
phi_pic2word.eval() | |
clip_vision_model.to(device, dtype=dtype) | |
clip_text_model.to(device, dtype=dtype) | |
if not args.test_fps: | |
# download and load sd | |
if not os.path.exists('./pretrained_models/lincir_large.pt'): | |
model_file_url = hf_hub_url(repo_id='navervision/zeroshot-cir-models', filename='lincir_large.pt') | |
cached_download(model_file_url, cache_dir='./pretrained_models', force_filename='lincir_large.pt') | |
state_dict = torch.load('./pretrained_models/lincir_large.pt', map_location=device) | |
phi.load_state_dict(state_dict['Phi']) | |
if not os.path.exists('./pretrained_models/pic2word_large.pt'): | |
model_file_url = hf_hub_url(repo_id='navervision/zeroshot-cir-models', filename='pic2word_large.pt') | |
cached_download(model_file_url, cache_dir='./pretrained_models', force_filename='pic2word_large.pt') | |
sd = torch.load('./pretrained_models/pic2word_large.pt', map_location=device)['state_dict_img2text'] | |
sd = {k[len('module.'):]: v for k, v in sd.items()} | |
phi_pic2word.load_state_dict(sd) | |
phi.to(device, dtype=dtype) | |
phi_searle.to(device, dtype=dtype) | |
phi_pic2word.to(device, dtype=dtype) | |
decoder = None | |
return {'clip_vision_model': clip_vision_model, | |
'clip_preprocess': clip_preprocess, | |
'clip_text_model': clip_text_model, | |
'tokenizer': tokenizer, | |
'phi': phi, | |
'phi_searle': phi_searle, | |
'phi_pic2word': phi_pic2word, | |
'decoder': decoder, | |
'device': device, | |
'dtype': dtype, | |
'clip_model_name': args.clip_model_name, | |
} | |
def predict(images, input_text, model_name): | |
start_time = time.time() | |
input_images = model_dict['clip_preprocess'](images, return_tensors='pt')['pixel_values'].to(model_dict['device']) | |
input_text = input_text.replace('$', '[$]') | |
input_tokens = model_dict['tokenizer'](text=input_text, return_tensors='pt', padding='max_length', truncation=True)['input_ids'].to(model_dict['device']) | |
input_tokens = torch.where(input_tokens == 49408, | |
torch.ones_like(input_tokens) * 259, | |
input_tokens) | |
image_features = model_dict['clip_vision_model'](pixel_values=input_images.to(model_dict['dtype'])).image_embeds | |
clip_image_time = time.time() - start_time | |
start_time = time.time() | |
if model_name == 'lincir': | |
estimated_token_embeddings = model_dict['phi'](image_features) | |
elif model_name == 'searle': | |
estimated_token_embeddings = model_dict['phi_searle'](image_features) | |
else: # model_name == 'pic2word' | |
estimated_token_embeddings = model_dict['phi_pic2word'](image_features) | |
phi_time = time.time() - start_time | |
start_time = time.time() | |
text_embeddings, text_last_hidden_states = encode_with_pseudo_tokens_HF(model_dict['clip_text_model'], input_tokens, estimated_token_embeddings, return_last_states=True) | |
clip_text_time = time.time() - start_time | |
start_time = time.time() | |
results = client.query(embedding_input=text_embeddings[0].tolist()) | |
retrieval_time = time.time() - start_time | |
output = '' | |
for idx, result in enumerate(results): | |
image_url = result['url'] | |
output += f'![image]({image_url})\n' | |
time_output = {'CLIP visual extractor': clip_image_time, | |
'CLIP textual extractor': clip_text_time, | |
'Phi projection': phi_time, | |
'CLIP retrieval': retrieval_time, | |
} | |
setup_output = {'device': model_dict['device'], | |
'dtype': model_dict['dtype'], | |
'Phi': model_name, | |
'CLIP': model_dict['clip_model_name'], | |
} | |
return {'time': time_output, 'setup': setup_output}, output | |
def test_fps(batch_size=1): | |
dummy_images = torch.rand([batch_size, 3, 224, 224]) | |
todo_list = ['phi', 'phi_pic2word'] | |
input_tokens = model_dict['tokenizer'](text=['a photo of $1 with flowers'] * batch_size, return_tensors='pt', padding='max_length', truncation=True)['input_ids'].to(model_dict['device']) | |
input_tokens = torch.where(input_tokens == 49409, | |
torch.ones_like(input_tokens) * 259, | |
input_tokens) | |
for model_name in todo_list: | |
time_array = [] | |
n_repeat = 100 | |
for _ in range(n_repeat): | |
start_time = time.time() | |
image_features = model_dict['clip_vision_model'](pixel_values=dummy_images.to(model_dict['clip_vision_model'].device, dtype=model_dict['clip_vision_model'].dtype)).image_embeds | |
token_embeddings = model_dict[model_name](image_features) | |
text_embeddings = encode_with_pseudo_tokens_HF(model_dict['clip_text_model'], input_tokens, token_embeddings) | |
end_time = time.time() | |
if _ > 5: | |
time_array.append(end_time - start_time) | |
print(f"{model_name}: {np.mean(time_array):.4f}") | |
if __name__ == '__main__': | |
args = parse_args() | |
global model_dict, client | |
model_dict = load_models(args) | |
if args.test_fps: | |
# check FPS of all models. | |
test_fps(1) | |
exit() | |
client = ClipClient(url="https://knn.laion.ai/knn-service", | |
indice_name="laion5B-H-14" if args.clip_model_name == "huge" else "laion5B-L-14", | |
) | |
title = 'Zeroshot CIR demo' | |
md_title = f'''# {title} | |
[LinCIR](https://arxiv.org/abs/2312.01998): Language-only Training of Zero-shot Composed Image Retrieval | |
[SEARLE](https://arxiv.org/abs/2303.15247): Zero-shot Composed Image Retrieval with Textual Inversion | |
[Pic2Word](https://arxiv.org/abs/2302.03084): Mapping Pictures to Words for Zero-shot Composed Image Retrieval | |
K-NN index for the retrieval results are entirely trained using the entire Laion-5B imageset. This is made possible thanks to the great work of [rom1504](https://github.com/rom1504/clip-retrieval). | |
''' | |
with gr.Blocks(title=title) as demo: | |
gr.Markdown(md_title) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
image_source = gr.Image(type='pil', label='image1') | |
model_name = gr.Radio(['lincir', 'searle', 'pic2word'], label='Phi model', value='lincir') | |
text_input = gr.Textbox(value='', label='Input text guidance. Special token is $') | |
submit_button = gr.Button('Submit') | |
gr.Examples([["example1.jpg", "$, pencil sketch", 'lincir']], inputs=[image_source, text_input, model_name]) | |
with gr.Column(): | |
json_output = gr.JSON(label='Processing time') | |
md_output = gr.Markdown(label='Output') | |
submit_button.click(predict, inputs=[image_source, text_input, model_name], outputs=[json_output, md_output]) | |
demo.queue() | |
demo.launch() | |