traversaal-ai's picture
Create app.py
d59caf9
raw
history blame
2.2 kB
import openai
import gradio as gr
import os
# Set your OpenAI API key here
openai.api_key = os.environ.get("openai_api_key")
# Define a function to generate responses using GPT-3.5 Turbo
def generate_response(user_prompt):
# Define the system message
system_msg = 'You are a helpful assistant.'
# Define the user message
prompt= f'''I will give you a question and you detect which category does this question belong to. It should be from these categories -
physical activity, sleep, nutrition and preventive care. Make sure you just reply with response in json format "category":"[sleep,nutrition]".
Note that single question may belong to multiple categories. Dont add any opening lines just reply with json response. If there is no match return no category
Question: {user_prompt}'''
#user_msg = 'Create a small dataset about total sales over the last year. The format of the dataset should be a data frame with 12 rows and 2 columns. The columns should be called "month" and "total_sales_usd". The "month" column should contain the shortened forms of month names from "Jan" to "Dec". The "total_sales_usd" column should contain random numeric values taken from a normal distribution with mean 100000 and standard deviation 5000. Provide Python code to generate the dataset, then provide the output in the format of a markdown table.'
# Create a dataset using GPT
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo", # Use GPT-3.5 Turbo engine,
messages=[{"role": "system", "content": system_msg},
{"role": "user", "content": prompt}],
max_tokens=100, # You can adjust this to limit the response length
)
return response["choices"][0]["message"]["content"]
# Create a Gradio interface
iface = gr.Interface(fn=generate_response,
inputs=[gr.components.Textbox( label="prompt",
value='Who is the target population for Abdominal Aortic Aneurysm (AAA) screening?')],
outputs=[gr.JSON(label="category")]
)
# Start the Gradio interface
iface.launch()