Spaces:
Paused
Paused
File size: 4,305 Bytes
d18942e 61ced1b d18942e 94f448e d18942e 94f448e d18942e 94f448e d18942e 61ced1b 94f448e 61ced1b d18942e 61ced1b d18942e 94f448e d18942e 61ced1b d18942e 238ce74 d18942e 61ced1b d18942e 61ced1b d18942e 94f448e d18942e 61ced1b d18942e 94f448e d18942e 61ced1b 94f448e d18942e 94f448e d18942e 61ced1b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import os
import time
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
import gradio as gr
from threading import Thread
MODEL_LIST = ["nawhgnuj/DonaldTrump-Llama-3.1-8B-Chat"]
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = os.environ.get("MODEL_ID", "nawhgnuj/DonaldTrump-Llama-3.1-8B-Chat")
TITLE = "<h1 style='color: #B71C1C; text-align: center;'>Donald Trump Chatbot</h1>"
TRUMP_AVATAR = "https://upload.wikimedia.org/wikipedia/commons/5/56/Donald_Trump_official_portrait.jpg"
CSS = """
.chatbot {
background-color: white;
}
.duplicate-button {
margin: auto !important;
color: white !important;
background: #B71C1C !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
color: #B71C1C;
}
.contain {object-fit: contain}
.avatar {width: 40px; height: 40px; border-radius: 50%; object-fit: cover;}
.user-message {
background-color: white !important;
color: black !important;
}
.bot-message {
background-color: #B71C1C !important;
color: white !important;
}
"""
device = "cuda" if torch.cuda.is_available() else "cpu"
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4")
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForCausalLM.from_pretrained(
MODEL,
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config)
@spaces.GPU()
def stream_chat(
message: str,
history: list,
):
system_prompt = "You are a Donald Trump chatbot. You only answer like Trump in style and tone."
temperature = 0.8
max_new_tokens = 1024
top_p = 1.0
top_k = 20
penalty = 1.2
conversation = [
{"role": "system", "content": system_prompt}
]
for prompt, answer in history:
conversation.extend([
{"role": "user", "content": prompt},
{"role": "assistant", "content": answer},
])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
eos_token_id=[128001,128008,128009],
streamer=streamer,
)
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
def add_text(history, text):
history = history + [(text, None)]
return history, ""
def bot(history):
user_message = history[-1][0]
bot_response = stream_chat(user_message, history[:-1])
history[-1][1] = ""
for character in bot_response:
history[-1][1] += character
yield history
with gr.Blocks(css=CSS, theme=gr.themes.Default()) as demo:
gr.HTML(TITLE)
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
avatar_images=(None, TRUMP_AVATAR),
height=600,
bubble_full_width=False,
show_label=False,
)
msg = gr.Textbox(
placeholder="Ask Donald Trump a question",
container=False,
scale=7
)
with gr.Row():
submit = gr.Button("Submit", scale=1, variant="primary")
clear = gr.Button("Clear", scale=1)
gr.Examples(
examples=[
["What's your stance on immigration?"],
["How would you describe your economic policies?"],
["What are your thoughts on the media?"],
],
inputs=msg,
)
submit.click(add_text, [chatbot, msg], [chatbot, msg], queue=False).then(
bot, chatbot, chatbot
)
clear.click(lambda: [], outputs=[chatbot], queue=False)
msg.submit(add_text, [chatbot, msg], [chatbot, msg], queue=False).then(
bot, chatbot, chatbot
)
if __name__ == "__main__":
demo.launch() |