File size: 4,305 Bytes
d18942e
 
 
 
 
 
 
 
61ced1b
d18942e
94f448e
d18942e
94f448e
d18942e
94f448e
d18942e
 
61ced1b
94f448e
61ced1b
d18942e
 
 
61ced1b
d18942e
 
 
 
94f448e
 
 
 
 
 
 
 
 
 
 
d18942e
 
 
61ced1b
d18942e
 
 
 
 
238ce74
d18942e
 
 
 
 
 
 
 
 
 
 
 
 
61ced1b
 
 
 
 
 
d18942e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61ced1b
 
 
 
 
d18942e
 
 
 
 
 
 
 
 
 
 
 
 
94f448e
 
 
 
 
 
 
 
 
 
 
d18942e
61ced1b
d18942e
94f448e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d18942e
61ced1b
94f448e
 
d18942e
94f448e
 
 
 
 
 
 
 
 
d18942e
 
 
61ced1b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import os
import time
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
import gradio as gr
from threading import Thread

MODEL_LIST = ["nawhgnuj/DonaldTrump-Llama-3.1-8B-Chat"]
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL = os.environ.get("MODEL_ID", "nawhgnuj/DonaldTrump-Llama-3.1-8B-Chat")

TITLE = "<h1 style='color: #B71C1C; text-align: center;'>Donald Trump Chatbot</h1>"

TRUMP_AVATAR = "https://upload.wikimedia.org/wikipedia/commons/5/56/Donald_Trump_official_portrait.jpg"

CSS = """
.chatbot {
    background-color: white;
}
.duplicate-button {
    margin: auto !important;
    color: white !important;
    background: #B71C1C !important;
    border-radius: 100vh !important;
}
h3 {
    text-align: center;
    color: #B71C1C;
}
.contain {object-fit: contain}
.avatar {width: 40px; height: 40px; border-radius: 50%; object-fit: cover;}
.user-message {
    background-color: white !important;
    color: black !important;
}
.bot-message {
    background-color: #B71C1C !important;
    color: white !important;
}
"""

device = "cuda" if torch.cuda.is_available() else "cpu"

quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4")

tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForCausalLM.from_pretrained(
    MODEL,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    quantization_config=quantization_config)

@spaces.GPU()
def stream_chat(
    message: str, 
    history: list,
):
    system_prompt = "You are a Donald Trump chatbot. You only answer like Trump in style and tone."
    temperature = 0.8
    max_new_tokens = 1024
    top_p = 1.0
    top_k = 20
    penalty = 1.2

    conversation = [
        {"role": "system", "content": system_prompt}
    ]
    for prompt, answer in history:
        conversation.extend([
            {"role": "user", "content": prompt}, 
            {"role": "assistant", "content": answer},
        ])

    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
    
    streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
    
    generate_kwargs = dict(
        input_ids=input_ids, 
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        eos_token_id=[128001,128008,128009],
        streamer=streamer,
    )

    with torch.no_grad():
        thread = Thread(target=model.generate, kwargs=generate_kwargs)
        thread.start()
        
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        yield buffer

def add_text(history, text):
    history = history + [(text, None)]
    return history, ""

def bot(history):
    user_message = history[-1][0]
    bot_response = stream_chat(user_message, history[:-1])
    history[-1][1] = ""
    for character in bot_response:
        history[-1][1] += character
        yield history

with gr.Blocks(css=CSS, theme=gr.themes.Default()) as demo:
    gr.HTML(TITLE)
    chatbot = gr.Chatbot(
        [],
        elem_id="chatbot",
        avatar_images=(None, TRUMP_AVATAR),
        height=600,
        bubble_full_width=False,
        show_label=False,
    )
    msg = gr.Textbox(
        placeholder="Ask Donald Trump a question",
        container=False,
        scale=7
    )
    with gr.Row():
        submit = gr.Button("Submit", scale=1, variant="primary")
        clear = gr.Button("Clear", scale=1)

    gr.Examples(
        examples=[
            ["What's your stance on immigration?"],
            ["How would you describe your economic policies?"],
            ["What are your thoughts on the media?"],
        ],
        inputs=msg,
    )

    submit.click(add_text, [chatbot, msg], [chatbot, msg], queue=False).then(
        bot, chatbot, chatbot
    )
    clear.click(lambda: [], outputs=[chatbot], queue=False)
    msg.submit(add_text, [chatbot, msg], [chatbot, msg], queue=False).then(
        bot, chatbot, chatbot
    )

if __name__ == "__main__":
    demo.launch()