import os import torch from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig import gradio as gr MODEL_LIST = ["nawhgnuj/DonaldTrump-Llama-3.1-8B-Chat"] HF_TOKEN = os.environ.get("HF_TOKEN", None) MODEL = os.environ.get("MODEL_ID", "nawhgnuj/DonaldTrump-Llama-3.1-8B-Chat") TITLE = "

Donald Trump Chatbot

" TRUMP_AVATAR = "https://upload.wikimedia.org/wikipedia/commons/5/56/Donald_Trump_official_portrait.jpg" CSS = """ .chatbot { background-color: white; } .duplicate-button { margin: auto !important; color: white !important; background: #B71C1C !important; border-radius: 100vh !important; } h3 { text-align: center; color: #B71C1C; } .contain {object-fit: contain} .avatar {width: 80px; height: 80px; border-radius: 50%; object-fit: cover;} .user-message { background-color: white !important; color: black !important; } .bot-message { background-color: #B71C1C !important; color: white !important; } """ device = "cuda" if torch.cuda.is_available() else "cpu" quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4") tokenizer = AutoTokenizer.from_pretrained(MODEL) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token tokenizer.pad_token_id = tokenizer.eos_token_id model = AutoModelForCausalLM.from_pretrained( MODEL, torch_dtype=torch.bfloat16, device_map="auto", quantization_config=quantization_config) def generate_response( message: str, history: list, temperature: float, max_new_tokens: int, top_p: float, top_k: int, ): system_prompt = """You are a Donald Trump chatbot. You only answer like Trump in his style and tone, reflecting his unique speech patterns. Incorporate the following characteristics in every response: 1. repeat key phrases for emphasis, use strong superlatives like 'tremendous' and 'fantastic,' attack opponents where appropriate (e.g., 'fake news media,' 'radical left') 2. focus on personal successes ('nobody's done more than I have') 3. keep sentences short and impactful, and show national pride. 4. Maintain a direct, informal tone, often addressing the audience as 'folks' and dismiss opposing views bluntly. 5. Repeat key phrases for emphasis, but avoid excessive repetition. Importantly, always respond to points in Trump's style. Keep responses concise and avoid unnecessary repetition. """ conversation = [ {"role": "system", "content": system_prompt} ] for prompt, answer in history: conversation.extend([ {"role": "user", "content": prompt}, {"role": "assistant", "content": answer}, ]) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device) with torch.no_grad(): output = model.generate( input_ids, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, ) response = tokenizer.decode(output[0][input_ids.shape[1]:], skip_special_tokens=True) return response.strip() def add_text(history, text): history = history + [(text, None)] return history, "" def bot(history, temperature, max_new_tokens, top_p, top_k): user_message = history[-1][0] bot_response = generate_response(user_message, history[:-1], temperature, max_new_tokens, top_p, top_k) history[-1][1] = bot_response return history with gr.Blocks(css=CSS, theme=gr.themes.Default()) as demo: gr.HTML(TITLE) chatbot = gr.Chatbot( [], elem_id="chatbot", avatar_images=(None, TRUMP_AVATAR), height=600, bubble_full_width=False, show_label=False, ) msg = gr.Textbox( placeholder="Ask Donald Trump a question", container=False, scale=7 ) with gr.Row(): submit = gr.Button("Submit", scale=1, variant="primary") clear = gr.Button("Clear", scale=1) with gr.Accordion("Advanced Settings", open=False): temperature = gr.Slider(minimum=0.1, maximum=1.5, value=0.8, step=0.1, label="Temperature") max_new_tokens = gr.Slider(minimum=50, maximum=1024, value=1024, step=1, label="Max New Tokens") top_p = gr.Slider(minimum=0.1, maximum=1.2, value=1.0, step=0.1, label="Top-p") top_k = gr.Slider(minimum=1, maximum=100, value=20, step=1, label="Top-k") gr.Examples( examples=[ ["What's your stance on immigration?"], ["How would you describe your economic policies?"], ["What are your thoughts on the media?"], ], inputs=msg, ) submit.click(add_text, [chatbot, msg], [chatbot, msg], queue=False).then( bot, [chatbot, temperature, max_new_tokens, top_p, top_k], chatbot ) clear.click(lambda: [], outputs=[chatbot], queue=False) msg.submit(add_text, [chatbot, msg], [chatbot, msg], queue=False).then( bot, [chatbot, temperature, max_new_tokens, top_p, top_k], chatbot ) if __name__ == "__main__": demo.launch()