import spaces import torch import gradio as gr from huggingface_hub import snapshot_download from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig model = None model_id = "nazimali/Mistral-Nemo-Kurdish-Instruct" infer_prompt = """Li jêr rêwerzek heye ku peywirek rave dike, bi têketinek ku çarçoveyek din peyda dike ve tê hev kirin. Bersivek ku daxwazê ​​bi guncan temam dike binivîsin. ### Telîmat: {} ### Têketin: {} ### Bersiv: """ snapshot_download("nazimali/Mistral-Nemo-Kurdish") snapshot_download(repo_id=model_id, ignore_patterns=["*.gguf"]) @spaces.GPU def respond( message, history: list[tuple[str, str]], ): global model, tokenizer if model is None: bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, ) model = AutoModelForCausalLM.from_pretrained( model_id, quantization_config=bnb_config, device_map="auto", ) tokenizer = AutoTokenizer.from_pretrained(model_id) model.eval() prompt = infer_prompt.format("tu arîkarek alîkar î", message) input_ids = tokenizer( prompt, return_tensors="pt", add_special_tokens=False, return_token_type_ids=False, ).to("cuda") with torch.inference_mode(): generated_ids = model.generate( **input_ids, max_new_tokens=120, do_sample=True, temperature=0.7, top_p=0.7, num_return_sequences=1, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, ) decoded_output = tokenizer.batch_decode(generated_ids)[0] return decoded_output.replace(prompt, "").replace("", "") demo = gr.ChatInterface(respond, type="messages", examples=["سڵاو ئەلیکوم، چۆنیت؟", "Selam alikum, tu çawa yî?", "Peace be upon you, how are you?"], title="Mistral Nemo Kurdish Instruct") if __name__ == "__main__": demo.launch()