File size: 10,219 Bytes
cb76d50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2189b37
cb76d50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56204ef
cb76d50
 
56204ef
cb76d50
 
 
 
 
eba677f
cb76d50
 
 
 
 
56204ef
 
 
 
 
 
 
cb76d50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eba677f
 
 
2189b37
cb76d50
ed185a9
 
cb76d50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ca8f3f
64e9fde
cb76d50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eba677f
 
 
cb76d50
 
 
 
 
eba677f
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
    ### LIBRARIES ###
# # Data
from matplotlib.pyplot import legend
import numpy as np
import pandas as pd
import torch
import json
from tqdm import tqdm
from math import floor
from datasets import load_dataset
from collections import defaultdict
from transformers import AutoTokenizer

# Analysis
# from gensim.models.doc2vec import Doc2Vec
# from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score
# import nltk
# nltk.download('punkt') #make sure that punkt is downloaded

# App & Visualization
import streamlit as st
import altair as alt
import plotly.graph_objects as go
from streamlit_vega_lite import altair_component

# utils
from random import sample
from error_analysis import utils as ut
# from PIL import Image


def down_samp(embedding):
    """Down sample a data frame for altiar visualization """
    # total number of positive and negative sentiments in the class
    #embedding = embedding.groupby('slice').apply(lambda x: x.sample(frac=0.3))
    total_size = embedding.groupby(['slice','label'], as_index=False).count()

    user_data = 0
    # if 'Your Sentences' in str(total_size['slice']):
    #     tmp = embedding.groupby(['slice'], as_index=False).count()
    #     val = int(tmp[tmp['slice'] == "Your Sentences"]['source'])
    #     user_data = val

    max_sample = total_size.groupby('slice').max()['content']

    # # down sample to meeting altair's max values
    # # but keep the proportional representation of groups
    down_samp = 1/(sum(max_sample.astype(float))/(1000-user_data))

    max_samp = max_sample.apply(lambda x: floor(x*down_samp)).astype(int).to_dict()
    max_samp['Your Sentences'] = user_data

    # # sample down for each group in the data frame
    embedding = embedding.groupby('slice').apply(lambda x: x.sample(n=max_samp.get(x.name))).reset_index(drop=True)

    # # order the embedding
    return(embedding)


def data_comparison(df):
    # set up a dropdown select bindinf
    # input_dropdown = alt.binding_select(options=['Negative Sentiment','Positive Sentiment'])
    selection = alt.selection_multi(fields=['slice','label'])
    color = alt.condition(alt.datum.slice == 'high-loss', alt.value("orange"), alt.value("steelblue"))
    # color = alt.condition(selection, 
    #                       alt.Color('slice:Q', legend=None),
    #                       # scale = alt.Scale(domain = pop_domain,range=color_range)),
    #                       alt.value('lightgray'))
    opacity = alt.condition(selection, alt.value(0.7), alt.value(0.25))

    # basic chart
    scatter = alt.Chart(df).mark_point(size=100, filled=True).encode(
        x=alt.X('x', axis=None),
        y=alt.Y('y', axis=None),
        color=color,
        shape=alt.Shape('label', scale=alt.Scale(range=['circle', 'diamond'])),
        tooltip=['slice','content','label','pred'],
        opacity=opacity
    ).properties(
        width=1500,
        height=1000
    ).interactive()

    legend = alt.Chart(df).mark_point().encode(
        y=alt.Y('slice:N', axis=alt.Axis(orient='right'), title="",),
        x=alt.X("label"),
        shape=alt.Shape('label', scale=alt.Scale(
            range=['circle', 'diamond']), legend=None),
        color=color
    ).add_selection(
        selection
    )

    layered = legend | scatter

    layered = layered.configure_axis(
        grid=False
    ).configure_view(
        strokeOpacity=0
    ).configure_legend(
        strokeColor='gray',
        fillColor='#EEEEEE',
        padding=10,
        cornerRadius=10,
        orient='top-right'

    )

    return layered


def quant_panel(embedding_df):
    """ Quantitative Panel Layout"""

    all_metrics = {}
    # st.warning("**Data Comparison**")

    # with st.expander("how to read this chart:"):
    #     st.markdown("* each **point** is a single sentence")
    #     st.markdown("* the **position** of each dot is determined mathematically based upon an analysis of the words in a sentence. The **closer** two points on the visualization the **more similar** the sentences are. The **further apart ** two points on the visualization the **more different** the sentences are")
    #     st.markdown(
    #             " * the **shape** of each point reflects whether it a positive (diamond) or negative sentiment (circle)")
    #     st.markdown("* the **color** of each point is the ")
    st.altair_chart(data_comparison(down_samp(embedding_df)))

def frequent_tokens(data, tokenizer, loss_quantile=0.95, top_k=200, smoothing=0.005):
    unique_tokens = []
    tokens = []
    for row in tqdm(data['content']):
        tokenized = tokenizer(row,padding=True, return_tensors='pt')
        tokens.append(tokenized['input_ids'].flatten())
        unique_tokens.append(torch.unique(tokenized['input_ids']))
    losses = data['loss'].astype(float)
    high_loss = losses.quantile(loss_quantile)
    loss_weights = (losses > high_loss)
    loss_weights = loss_weights / loss_weights.sum()
    token_frequencies = defaultdict(float)
    token_frequencies_error = defaultdict(float)

    weights_uniform = np.full_like(loss_weights, 1 / len(loss_weights))

    num_examples = len(data)
    for i in tqdm(range(num_examples)):
        for token in unique_tokens[i]:
            token_frequencies[token.item()] += weights_uniform[i]
            token_frequencies_error[token.item()] += loss_weights[i]

    token_lrs = {k: (smoothing+token_frequencies_error[k]) / (smoothing+token_frequencies[k]) for k in token_frequencies}
    tokens_sorted = list(map(lambda x: x[0], sorted(token_lrs.items(), key=lambda x: x[1])[::-1]))

    top_tokens = []
    for i, (token) in enumerate(tokens_sorted[:top_k]):
        top_tokens.append(['%10s' % (tokenizer.decode(token)), '%.4f' % (token_frequencies[token]), '%.4f' % (
            token_frequencies_error[token]), '%4.2f' % (token_lrs[token])])
    return pd.DataFrame(top_tokens, columns=['Token', 'Freq', 'Freq error slice', 'lrs'])


@st.cache(ttl=600)
def get_data(spotlight, emb):
    preds = spotlight.outputs.numpy()
    losses = spotlight.losses.numpy()
    embeddings = pd.DataFrame(emb, columns=['x', 'y'])
    num_examples = len(losses)
    # dataset_labels = [dataset[i]['label'] for i in range(num_examples)]
    return pd.concat([pd.DataFrame(np.transpose(np.vstack([dataset[:num_examples]['content'], 
                    dataset[:num_examples]['label'], preds, losses])), columns=['content', 'label', 'pred', 'loss']), embeddings], axis=1)


def topic_distribution(weights, smoothing=0.01):
    topic_frequencies = defaultdict(float)
    topic_frequencies_spotlight = defaultdict(float)
    weights_uniform = np.full_like(weights, 1 / len(weights))
    num_examples = len(weights)
    for i in range(num_examples):
        example = dataset[i]
        category = example['title']
        topic_frequencies[category] += weights_uniform[i]
        topic_frequencies_spotlight[category] += weights[i]

    topic_ratios = {c: (smoothing + topic_frequencies_spotlight[c]) / (
        smoothing + topic_frequencies[c]) for c in topic_frequencies}

    categories_sorted = map(lambda x: x[0], sorted(
        topic_ratios.items(), key=lambda x: x[1], reverse=True))

    topic_distr = []
    for category in categories_sorted:
        topic_distr.append(['%.3f' % topic_frequencies[category], '%.3f' %
                           topic_frequencies_spotlight[category], '%.2f' % topic_ratios[category], '%s' % category])

    return pd.DataFrame(topic_distr, columns=['Overall frequency', 'Error frequency', 'Ratio', 'Category'])
    # for category in categories_sorted:
    #    return(topic_frequencies[category], topic_frequencies_spotlight[category], topic_ratios[category], category)


if __name__ == "__main__":
    ### STREAMLIT APP CONGFIG ###
    st.set_page_config(layout="wide", page_title="Error Slice Analysis")

    ut.init_style()

    lcol, rcol = st.columns([2, 3])
    # ******* loading the mode and the data
    with st.sidebar:
        st.title('Error Analysis')
    dataset = st.sidebar.selectbox(
        "Dataset",
        ["amazon_polarity", "squad", "movielens", "waterbirds"],
        index=0
    )

    tokenizer = AutoTokenizer.from_pretrained(
        "distilbert-base-uncased-finetuned-sst-2-english")

    model = st.sidebar.selectbox(
        "Model",
        ["distilbert-base-uncased-finetuned-sst-2-english",
            "distilbert-base-uncased-finetuned-sst-2-english"],
        index=0
    )

    loss_quantile = st.sidebar.selectbox(
        "Loss Quantile",
        [0.98, 0.95, 0.9, 0.8, 0.75],
        index = 1
    )
    ### LOAD DATA AND SESSION VARIABLES ###
    data_df = pd.read_parquet('./assets/data/amazon_polarity.test.parquet')
    data_df.reset_index(drop=True, inplace=True)
    embedding_umap = data_df[['x','y']]
    if "user_data" not in st.session_state:
        st.session_state["user_data"] = data_df
    if "selected_slice" not in st.session_state:
        st.session_state["selected_slice"] = None
    if "embedding" not in st.session_state:
        st.session_state["embedding"] = embedding_umap

    with lcol:
        st.title('Error Slices')
        dataframe = data_df[['content', 'label', 'pred', 'loss']].sort_values(
            by=['loss'], ascending=False)
        table_html = dataframe.to_html(
            columns=['content', 'label', 'pred', 'loss'], max_rows=100)
        # table_html = table_html.replace("<th>", '<th align="left">')  # left-align the headers
        st.write(dataframe)
        st.title('Word Distribution in Error Slice')
        commontokens = frequent_tokens(data_df, tokenizer, loss_quantile=loss_quantile)
        st.write(commontokens)
    # st_aggrid.AgGrid(dataframe)
    # table_html = dataframe.to_html(columns=['content', 'label', 'pred', 'loss'], max_rows=100)
    # table_html = table_html.replace("<th>", '<th align="left">')  # left-align the headers
    # st.write(table_html)
    
    with rcol:  
        data_df['loss'] = data_df['loss'].astype(float)
        losses = data_df['loss']
        high_loss = losses.quantile(loss_quantile)
        data_df['slice'] = 'high-loss'
        data_df['slice'] = data_df['slice'].where(data_df['loss'] > high_loss, 'low-loss')
        quant_panel(data_df)