nazneen commited on
Commit
0154388
·
1 Parent(s): 23efaf2

adding parquets

Browse files
Files changed (1) hide show
  1. app.py +17 -18
app.py CHANGED
@@ -224,15 +224,6 @@ if __name__ == "__main__":
224
  ["distilbert-base-uncased-finetuned-sst-2-english",
225
  "albert-base-v2-yelp-polarity"],
226
  )
227
-
228
- loss_quantile = st.sidebar.slider(
229
- "Loss Quantile", min_value=0.5, max_value=1.0,step=0.01,value=0.95
230
- )
231
-
232
- run_kmeans = st.sidebar.radio("Cluster error slice?", ('True', 'False'), index=0)
233
-
234
- num_clusters = st.sidebar.slider("# clusters", min_value=1, max_value=20, step=1, value=3)
235
-
236
  ### LOAD DATA AND SESSION VARIABLES ###
237
  data_df = pd.read_parquet('./assets/data/'+dataset+ '_'+ model+'.parquet')
238
  if model == 'albert-base-v2-yelp-polarity':
@@ -243,13 +234,28 @@ if __name__ == "__main__":
243
  st.session_state["user_data"] = data_df
244
  if "selected_slice" not in st.session_state:
245
  st.session_state["selected_slice"] = None
246
-
 
 
 
247
  data_df['loss'] = data_df['loss'].astype(float)
248
  losses = data_df['loss']
249
  high_loss = losses.quantile(loss_quantile)
250
  data_df['slice'] = 'high-loss'
251
  data_df['slice'] = data_df['slice'].where(data_df['loss'] > high_loss, 'low-loss')
252
 
 
 
 
 
 
 
 
 
 
 
 
 
253
  if run_kmeans == 'True':
254
  merged = kmeans(data_df,num_clusters=num_clusters)
255
  with lcol:
@@ -264,12 +270,5 @@ if __name__ == "__main__":
264
  st.markdown("* The table displays model error slices on the evaluation dataset, sorted by loss.")
265
  st.markdown("* Each row is an input example that includes the label, model pred, loss, and error cluster.")
266
  st.write(dataframe,width=900, height=300)
267
-
268
- with rcol:
269
- with st.spinner(text='loading...'):
270
- st.markdown('<h3>Word Distribution in Error Slice</h3>', unsafe_allow_html=True)
271
- commontokens = frequent_tokens(merged, tokenizer, loss_quantile=loss_quantile)
272
- with st.expander("How to read the table:"):
273
- st.markdown("* The table displays the most frequent tokens in error slices, relative to their frequencies in the val set.")
274
- st.write(commontokens)
275
  quant_panel(merged)
 
224
  ["distilbert-base-uncased-finetuned-sst-2-english",
225
  "albert-base-v2-yelp-polarity"],
226
  )
 
 
 
 
 
 
 
 
 
227
  ### LOAD DATA AND SESSION VARIABLES ###
228
  data_df = pd.read_parquet('./assets/data/'+dataset+ '_'+ model+'.parquet')
229
  if model == 'albert-base-v2-yelp-polarity':
 
234
  st.session_state["user_data"] = data_df
235
  if "selected_slice" not in st.session_state:
236
  st.session_state["selected_slice"] = None
237
+
238
+ loss_quantile = st.sidebar.slider(
239
+ "Loss Quantile", min_value=0.5, max_value=1.0,step=0.01,value=0.95
240
+ )
241
  data_df['loss'] = data_df['loss'].astype(float)
242
  losses = data_df['loss']
243
  high_loss = losses.quantile(loss_quantile)
244
  data_df['slice'] = 'high-loss'
245
  data_df['slice'] = data_df['slice'].where(data_df['loss'] > high_loss, 'low-loss')
246
 
247
+ with rcol:
248
+ with st.spinner(text='loading...'):
249
+ st.markdown('<h3>Word Distribution in Error Slice</h3>', unsafe_allow_html=True)
250
+ commontokens = frequent_tokens(data_df, tokenizer, loss_quantile=loss_quantile)
251
+ with st.expander("How to read the table:"):
252
+ st.markdown("* The table displays the most frequent tokens in error slices, relative to their frequencies in the val set.")
253
+ st.write(commontokens)
254
+
255
+ run_kmeans = st.sidebar.radio("Cluster error slice?", ('True', 'False'), index=0)
256
+
257
+ num_clusters = st.sidebar.slider("# clusters", min_value=1, max_value=20, step=1, value=3)
258
+
259
  if run_kmeans == 'True':
260
  merged = kmeans(data_df,num_clusters=num_clusters)
261
  with lcol:
 
270
  st.markdown("* The table displays model error slices on the evaluation dataset, sorted by loss.")
271
  st.markdown("* Each row is an input example that includes the label, model pred, loss, and error cluster.")
272
  st.write(dataframe,width=900, height=300)
273
+
 
 
 
 
 
 
 
274
  quant_panel(merged)