Spaces:
Build error
Build error
streamlit app
Browse files
app.py
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### LIBRARIES ###
|
2 |
+
# # Data
|
3 |
+
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
+
import json
|
6 |
+
from math import floor
|
7 |
+
|
8 |
+
# Robustness Gym and Analysis
|
9 |
+
import robustnessgym as rg
|
10 |
+
from gensim.models.doc2vec import Doc2Vec
|
11 |
+
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score
|
12 |
+
import nltk
|
13 |
+
nltk.download('punkt') #make sure that punkt is downloaded
|
14 |
+
|
15 |
+
# App & Visualization
|
16 |
+
import streamlit as st
|
17 |
+
import altair as alt
|
18 |
+
|
19 |
+
# utils
|
20 |
+
from interactive_model_cards import utils as ut
|
21 |
+
from interactive_model_cards import app_layout as al
|
22 |
+
from random import sample
|
23 |
+
from PIL import Image
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
### LOADING DATA ###
|
28 |
+
# model card data
|
29 |
+
@st.experimental_memo
|
30 |
+
def load_model_card():
|
31 |
+
with open("./assets/data/text_explainer/model_card.json") as f:
|
32 |
+
mc_text = json.load(f)
|
33 |
+
return mc_text
|
34 |
+
|
35 |
+
|
36 |
+
# pre-computed robusntess gym dev bench
|
37 |
+
# @st.experimental_singleton
|
38 |
+
@st.cache(allow_output_mutation=True)
|
39 |
+
def load_data():
|
40 |
+
# load dev bench
|
41 |
+
devBench = rg.DevBench.load("./assets/data/rg/sst_db.devbench")
|
42 |
+
return devBench
|
43 |
+
|
44 |
+
|
45 |
+
# load model
|
46 |
+
@st.experimental_singleton
|
47 |
+
def load_model():
|
48 |
+
model = rg.HuggingfaceModel(
|
49 |
+
"distilbert-base-uncased-finetuned-sst-2-english", is_classifier=True
|
50 |
+
)
|
51 |
+
return model
|
52 |
+
|
53 |
+
#load pre-computed embedding
|
54 |
+
def load_embedding():
|
55 |
+
embedding = pd.read_pickle("./assets/models/sst_vectors.pkl")
|
56 |
+
return embedding
|
57 |
+
|
58 |
+
#load doc2vec model
|
59 |
+
@st.experimental_singleton
|
60 |
+
def load_doc2vec():
|
61 |
+
doc2vec = Doc2Vec.load("./assets/models/sst_train.doc2vec")
|
62 |
+
return(doc2vec)
|
63 |
+
|
64 |
+
|
65 |
+
# @st.experimental_memo
|
66 |
+
def load_examples():
|
67 |
+
with open("./assets/data/user_data/example_sentence.json") as f:
|
68 |
+
examples = json.load(f)
|
69 |
+
return examples
|
70 |
+
|
71 |
+
|
72 |
+
# loading the dataset
|
73 |
+
def load_basic():
|
74 |
+
# load data
|
75 |
+
devBench = load_data()
|
76 |
+
# load model
|
77 |
+
model = load_model()
|
78 |
+
#protected_classes
|
79 |
+
protected_classes = json.load(open("./assets/data/protected_terms.json"))
|
80 |
+
|
81 |
+
return devBench, model, protected_classes
|
82 |
+
|
83 |
+
@st.experimental_singleton
|
84 |
+
def load_title():
|
85 |
+
img = Image.open("./assets/img/title.png")
|
86 |
+
return(img)
|
87 |
+
|
88 |
+
|
89 |
+
if __name__ == "__main__":
|
90 |
+
|
91 |
+
### STREAMLIT APP CONGFIG ###
|
92 |
+
st.set_page_config(layout="wide", page_title="Interactive Model Card")
|
93 |
+
|
94 |
+
# import custom styling
|
95 |
+
ut.init_style()
|
96 |
+
|
97 |
+
### LOAD DATA AND SESSION VARIABLES ###
|
98 |
+
|
99 |
+
# ******* loading the mode and the data
|
100 |
+
with st.spinner():
|
101 |
+
sst_db, model,protected_classes = load_basic()
|
102 |
+
embedding = load_embedding()
|
103 |
+
doc2vec = load_doc2vec()
|
104 |
+
|
105 |
+
# load example sentences
|
106 |
+
sentence_examples = load_examples()
|
107 |
+
|
108 |
+
# ******* session state variables
|
109 |
+
if "user_data" not in st.session_state:
|
110 |
+
st.session_state["user_data"] = pd.DataFrame()
|
111 |
+
if "example_sent" not in st.session_state:
|
112 |
+
st.session_state["example_sent"] = "I like you. I love you"
|
113 |
+
if "quant_ex" not in st.session_state:
|
114 |
+
st.session_state["quant_ex"] = {"Overall Performance": sst_db.metrics["model"]}
|
115 |
+
if "selected_slice" not in st.session_state:
|
116 |
+
st.session_state["selected_slice"] = None
|
117 |
+
if "slice_terms" not in st.session_state:
|
118 |
+
st.session_state["slice_terms"] = {}
|
119 |
+
if "embedding" not in st.session_state:
|
120 |
+
st.session_state["embedding"] = embedding
|
121 |
+
if "protected_class" not in st.session_state:
|
122 |
+
st.session_state["protected_class"] = protected_classes
|
123 |
+
|
124 |
+
|
125 |
+
### STREAMLIT APP LAYOUT###
|
126 |
+
|
127 |
+
# ******* MODEL CARD PANEL *******
|
128 |
+
#st.sidebar.title("Interactive Model Card")
|
129 |
+
img = load_title()
|
130 |
+
st.sidebar.image(img,width=400)
|
131 |
+
st.sidebar.warning("Data is not permanently collected or stored from your interactions, but is temporarily cached during usage.")
|
132 |
+
|
133 |
+
# load model card data
|
134 |
+
errors = st.sidebar.checkbox("Show Warnings", value=True)
|
135 |
+
model_card = load_model_card()
|
136 |
+
al.model_card_panel(model_card,errors)
|
137 |
+
|
138 |
+
lcol, rcol = st.columns([4, 8])
|
139 |
+
|
140 |
+
# ******* USER EXAMPLE DATA PANEL *******
|
141 |
+
st.markdown("---")
|
142 |
+
with lcol:
|
143 |
+
|
144 |
+
# Choose waht to show for the qunatiative analysis.
|
145 |
+
st.write("""<h1 style="font-size:20px;padding-top:0px;"> Quantitative Analysis</h1>""",
|
146 |
+
unsafe_allow_html=True)
|
147 |
+
|
148 |
+
st.markdown("View the model's performance or visually explore the model's training and testing dataset")
|
149 |
+
|
150 |
+
data_view = st.selectbox("Show:",
|
151 |
+
["Model Performance Metrics","Data Subpopulation Comparison Visualization"])
|
152 |
+
|
153 |
+
st.markdown("Any groups you define via the *analysis actions* will be automatically added to the view")
|
154 |
+
st.markdown("---")
|
155 |
+
|
156 |
+
|
157 |
+
# Additional Analysis Actions
|
158 |
+
st.write(
|
159 |
+
"""<h1 style="font-size:18px;padding-top:5px;"> Analysis Actions</h1>""",
|
160 |
+
unsafe_allow_html=True,
|
161 |
+
)
|
162 |
+
al.example_panel(sentence_examples, model, sst_db,doc2vec)
|
163 |
+
|
164 |
+
# ****** GUIDANCE PANEL *****
|
165 |
+
with st.expander("Guidance"):
|
166 |
+
st.markdown(
|
167 |
+
"Need help understanding what you're seeing in this model card?"
|
168 |
+
)
|
169 |
+
|
170 |
+
st.markdown(
|
171 |
+
" * **[Understanding Metrics](https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-machine-learning-tips-and-tricks)**: A cheatsheet of model metrics"
|
172 |
+
)
|
173 |
+
st.markdown(
|
174 |
+
" * **[Understanding Sentiment Models](https://www.semanticscholar.org/topic/Sentiment-analysis/6011)**: An overview of sentiment analysis"
|
175 |
+
)
|
176 |
+
st.markdown(
|
177 |
+
"* **[Next Steps](https://docs.google.com/document/d/1r9J1NQ7eTibpXkCpcucDEPhASGbOQAMhRTBvosGu4Pk/edit?usp=sharin)**: Suggestions for follow-on actions"
|
178 |
+
)
|
179 |
+
st.markdown("Feel free to submit feedback via our [online form](https://sfdc.co/imc_feedback)")
|
180 |
+
|
181 |
+
# ******* QUANTITATIVE DATA PANEL *******
|
182 |
+
al.quant_panel(sst_db, st.session_state["embedding"], rcol,data_view)
|