|
from torch import nn |
|
import transformers |
|
import torch |
|
from PIL import Image |
|
|
|
|
|
class CLIPModel(nn.Module): |
|
def __init__(self, model_name: str = "openai/clip-vit-base-patch32", processor_name=None): |
|
super(CLIPModel, self).__init__() |
|
|
|
if processor_name is None: |
|
processor_name = model_name |
|
|
|
self.model = transformers.CLIPModel.from_pretrained(model_name) |
|
self.processor = transformers.CLIPProcessor.from_pretrained(processor_name) |
|
|
|
def __repr__(self): |
|
return "CLIPModel()" |
|
|
|
def forward(self, features): |
|
image_embeds = [] |
|
text_embeds = [] |
|
|
|
if 'pixel_values' in features: |
|
vision_outputs = self.model.vision_model(pixel_values=features['pixel_values']) |
|
image_embeds = self.model.visual_projection(vision_outputs[1]) |
|
|
|
if 'input_ids' in features: |
|
text_outputs = self.model.text_model( |
|
input_ids=features.get('input_ids'), |
|
attention_mask=features.get('attention_mask', None), |
|
position_ids=features.get('position_ids', None), |
|
output_attentions=features.get('output_attentions', None), |
|
output_hidden_states=features.get('output_hidden_states', None), |
|
) |
|
text_embeds = self.model.text_projection(text_outputs[1]) |
|
|
|
sentence_embedding = [] |
|
image_features = iter(image_embeds) |
|
text_features = iter(text_embeds) |
|
|
|
for idx, input_type in enumerate(features['image_text_info']): |
|
if input_type == 0: |
|
sentence_embedding.append(next(image_features)) |
|
else: |
|
sentence_embedding.append(next(text_features)) |
|
|
|
features['sentence_embedding'] = torch.stack(sentence_embedding).float() |
|
|
|
return features |
|
|
|
def tokenize(self, texts): |
|
images = [] |
|
texts_values = [] |
|
image_text_info = [] |
|
|
|
for idx, data in enumerate(texts): |
|
if isinstance(data, Image.Image): |
|
images.append(data) |
|
image_text_info.append(0) |
|
else: |
|
texts_values.append(data) |
|
image_text_info.append(1) |
|
|
|
if len(texts_values) == 0: |
|
texts_values = None |
|
if len(images) == 0: |
|
images = None |
|
|
|
inputs = self.processor(text=texts_values, images=images, return_tensors="pt", padding=True) |
|
inputs['image_text_info'] = image_text_info |
|
return inputs |
|
|
|
def save(self, output_path: str): |
|
self.model.save_pretrained(output_path) |
|
self.processor.save_pretrained(output_path) |
|
|
|
@staticmethod |
|
def load(input_path: str): |
|
return CLIPModel(model_name=input_path) |
|
|