# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TODO: Add a description here.""" import evaluate import datasets import numpy as np # TODO: Add BibTeX citation _CITATION = """\ @InProceedings{huggingface:module, title = {A great new module}, authors={huggingface, Inc.}, year={2020} } """ # TODO: Add description of the module here _DESCRIPTION = """\ This new module is designed to solve this great ML task and is crafted with a lot of care. """ # TODO: Add description of the arguments of the module here _KWARGS_DESCRIPTION = """ Calculates how good are predictions given some references, using certain scores Args: predictions: list of predictions to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Returns: accuracy: description of the first score, another_score: description of the second score, Examples: Examples should be written in doctest format, and should illustrate how to use the function. >>> my_new_module = evaluate.load("my_new_module") >>> results = my_new_module.compute(references=[0, 1], predictions=[0, 1]) >>> print(results) {'accuracy': 1.0} """ # TODO: Define external resources urls if needed BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt" # This code was taken from https://gist.github.com/kylebgorman/1081951/bce3de986e4b05fc0b63d4d9e0cfa4bde6664365 def _dist(A, B, insertion, deletion, substitution): D = np.zeros((len(A) + 1, len(B) + 1)) for i in range(len(A)): D[i + 1][0] = D[i][0] + deletion for j in range(len(B)): D[0][j + 1] = D[0][j] + insertion for i in range(len(A)): # fill out middle of matrix for j in range(len(B)): if A[i] == B[j]: D[i + 1][j + 1] = D[i][j] # aka, it's free. else: D[i + 1][j + 1] = min(D[i + 1][j] + insertion, D[i][j + 1] + deletion, D[i][j] + substitution) return D def levenshtein_distance(l1, l2, normalize=False): dist = _dist(l1, l2, 1, 1, 1)[-1][-1] if normalize: return dist / max(len(l1), len(l2)) else: return dist # @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class LevenshteinDistance(evaluate.Comparison): """TODO: Short description of my evaluation module.""" def _info(self): # TODO: Specifies the evaluate.EvaluationModuleInfo object return evaluate.ComparisonInfo( # This is the description that will appear on the modules page. module_type="comparison", description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, # This defines the format of each prediction and reference features=datasets.Features({ "predictions": datasets.Value("string", id="sequence"), "references": datasets.Value("string", id="sequence"), }), # Homepage of the module for documentation homepage="http://module.homepage", # Additional links to the codebase or references codebase_urls=["http://github.com/path/to/codebase/of/new_module"], reference_urls=["http://path.to.reference.url/new_module"] ) def _download_and_prepare(self, dl_manager): """Optional: download external resources useful to compute the scores""" # TODO: Download external resources if needed pass def _compute(self, predictions, references, tokenizer=lambda x: x.split(), normalize=False): """Returns the scores""" dists = [] for prediction, reference in zip(predictions, references): tokenized_prediction = tokenizer(prediction) tokenized_reference = tokenizer(reference) dists.append(levenshtein_distance(tokenized_prediction, tokenized_reference, normalize=normalize)) avg_dist = np.mean(dists) std_dist = np.std(dists) return { "levenshtein_distance": avg_dist, "distance_std": std_dist, "distances": dists, }