File size: 5,513 Bytes
7dd9869
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import argparse

from . import gaussian_diffusion as gd
from .respace import SpacedDiffusion, space_timesteps

# from .unet import SuperResModel

NUM_CLASSES = 1000


def model_and_diffusion_defaults():
    """
    Defaults for image training.
    """
    return dict(
        image_size=64,
        num_channels=128,
        num_res_blocks=2,
        num_heads=4,
        num_heads_upsample=-1,
        attention_resolutions="16,8",
        dropout=0.0,
        learn_sigma=False,
        class_cond=False,
        diffusion_steps=1000,
        noise_schedule="linear",
        timestep_respacing="",
        use_kl=False,
        predict_xstart=False,
        rescale_timesteps=True,
        rescale_learned_sigmas=True,
        use_checkpoint=False,
        use_scale_shift_norm=True,
        model_arch="trans-unet",
        in_channel=8,
        out_channel=8,
        training_mode="emb",
        vocab_size=66,
        config_name="QizhiPei/biot5-base-text2mol",
        experiment_mode="lm",
        logits_mode=1,
    )


# def sr_model_and_diffusion_defaults():
#     res = model_and_diffusion_defaults()
#     res["large_size"] = 256
#     res["small_size"] = 64
#     arg_names = inspect.getfullargspec(sr_create_model_and_diffusion)[0]
#     for k in res.copy().keys():
#         if k not in arg_names:
#             del res[k]
#     return res


# def sr_create_model_and_diffusion(
#     large_size,
#     small_size,
#     class_cond,
#     learn_sigma,
#     num_channels,
#     num_res_blocks,
#     num_heads,
#     num_heads_upsample,
#     attention_resolutions,
#     dropout,
#     diffusion_steps,
#     noise_schedule,
#     timestep_respacing,
#     use_kl,
#     predict_xstart,
#     rescale_timesteps,
#     rescale_learned_sigmas,
#     use_checkpoint,
#     use_scale_shift_norm,
# ):
#     model = sr_create_model(
#         large_size,
#         small_size,
#         num_channels,
#         num_res_blocks,
#         learn_sigma=learn_sigma,
#         class_cond=class_cond,
#         use_checkpoint=use_checkpoint,
#         attention_resolutions=attention_resolutions,
#         num_heads=num_heads,
#         num_heads_upsample=num_heads_upsample,
#         use_scale_shift_norm=use_scale_shift_norm,
#         dropout=dropout,
#     )
#     diffusion = create_gaussian_diffusion(
#         steps=diffusion_steps,
#         learn_sigma=learn_sigma,
#         noise_schedule=noise_schedule,
#         use_kl=use_kl,
#         predict_xstart=predict_xstart,
#         rescale_timesteps=rescale_timesteps,
#         rescale_learned_sigmas=rescale_learned_sigmas,
#         timestep_respacing=timestep_respacing,
#     )
#     return model, diffusion


# def sr_create_model(
#     large_size,
#     small_size,
#     num_channels,
#     num_res_blocks,
#     learn_sigma,
#     class_cond,
#     use_checkpoint,
#     attention_resolutions,
#     num_heads,
#     num_heads_upsample,
#     use_scale_shift_norm,
#     dropout,
# ):
#     _ = small_size  # hack to prevent unused variable

#     if large_size == 256:
#         channel_mult = (1, 1, 2, 2, 4, 4)
#     elif large_size == 64:
#         channel_mult = (1, 2, 3, 4)
#     else:
#         raise ValueError(f"unsupported large size: {large_size}")

#     attention_ds = []
#     for res in attention_resolutions.split(","):
#         attention_ds.append(large_size // int(res))

#     return SuperResModel(
#         in_channels=3,
#         model_channels=num_channels,
#         out_channels=(3 if not learn_sigma else 6),
#         num_res_blocks=num_res_blocks,
#         attention_resolutions=tuple(attention_ds),
#         dropout=dropout,
#         channel_mult=channel_mult,
#         num_classes=(NUM_CLASSES if class_cond else None),
#         use_checkpoint=use_checkpoint,
#         num_heads=num_heads,
#         num_heads_upsample=num_heads_upsample,
#         use_scale_shift_norm=use_scale_shift_norm,
#     )


def create_gaussian_diffusion(
    *,
    steps=1000,
    learn_sigma=False,
    noise_schedule="linear",  # sqrt
    use_kl=False,
    predict_xstart=False,  # True
    rescale_timesteps=False,  # True
    rescale_learned_sigmas=False,  # True
    timestep_respacing="",
    model_arch="conv-unet",  # transformer
    training_mode="emb",  # e2e
):
    return SpacedDiffusion(
        use_timesteps=space_timesteps(2000, [2000]),
        betas=gd.get_named_beta_schedule("sqrt", 2000),
        model_mean_type=(gd.ModelMeanType.START_X),
        model_var_type=(
            (gd.ModelVarType.FIXED_LARGE)
            if not learn_sigma
            else gd.ModelVarType.LEARNED_RANGE
        ),
        loss_type=gd.LossType.E2E_MSE,
        rescale_timesteps=True,
        model_arch="transformer",
        training_mode="e2e",
    )


def add_dict_to_argparser(parser, default_dict):
    for k, v in default_dict.items():
        v_type = type(v)
        if v is None:
            v_type = str
        elif isinstance(v, bool):
            v_type = str2bool
        parser.add_argument(f"--{k}", default=v, type=v_type)


def args_to_dict(args, keys):
    return {k: getattr(args, k) for k in keys}


def str2bool(v):
    """
    https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse
    """
    if isinstance(v, bool):
        return v
    if v.lower() in ("yes", "true", "t", "y", "1"):
        return True
    elif v.lower() in ("no", "false", "f", "n", "0"):
        return False
    else:
        raise argparse.ArgumentTypeError("boolean value expected")