Spaces:
Sleeping
Sleeping
File size: 16,693 Bytes
7dd9869 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
import os
import copy
import functools
import blobfile as bf
import torch
import torch.distributed as dist
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.optim import AdamW
from . import dist_util, logger
from .fp16_util import (
make_master_params,
master_params_to_model_params,
model_grads_to_master_grads,
unflatten_master_params,
zero_grad,
)
from .nn import update_ema
from .resample import LossAwareSampler, UniformSampler
import wandb
from tqdm import tqdm
INITIAL_LOG_LOSS_SCALE = 20.0
class TrainLoop:
def __init__(
self,
*,
model,
diffusion,
data,
batch_size,
microbatch,
lr,
ema_rate,
log_interval,
save_interval,
resume_checkpoint,
use_fp16=False,
fp16_scale_growth=1e-3,
schedule_sampler=None,
weight_decay=0.0,
lr_anneal_steps=0,
checkpoint_path="",
gradient_clipping=-1.0,
eval_data=None,
eval_interval=-1,
):
print('Initiating train loop')
rank = dist.get_rank()
world_size = dist.get_world_size()
self.rank = rank
self.world_size = world_size
self.diffusion = diffusion
self.data = data
self.eval_data = eval_data
self.batch_size = batch_size
self.microbatch = microbatch if microbatch > 0 else batch_size
self.lr = lr * world_size
self.ema_rate = (
[ema_rate]
if isinstance(ema_rate, float)
else [float(x) for x in ema_rate.split(",")]
)
self.log_interval = log_interval
self.eval_interval = eval_interval
self.save_interval = save_interval
self.resume_checkpoint = resume_checkpoint
self.use_fp16 = use_fp16
self.fp16_scale_growth = fp16_scale_growth
self.schedule_sampler = schedule_sampler or UniformSampler(diffusion)
self.weight_decay = weight_decay
self.lr_anneal_steps = lr_anneal_steps
self.gradient_clipping = gradient_clipping
self.step = 0
self.resume_step = 0
self.global_batch = self.batch_size * dist.get_world_size()
self.lg_loss_scale = INITIAL_LOG_LOSS_SCALE
self.sync_cuda = torch.cuda.is_available()
self.checkpoint_path = checkpoint_path
self.model = model.to(rank)
if torch.cuda.is_available(): # DEBUG **
self.use_ddp = True
self.ddp_model = self.model
# self.ddp_model = DDP(
# self.model,
# device_ids=[self.rank],
# find_unused_parameters=False,
# )
else:
self.ddp_model = model.to("cpu")
self.model_params = list(self.ddp_model.parameters())
self.master_params = self.model_params
self.opt = AdamW(self.master_params, lr=self.lr, weight_decay=self.weight_decay)
if self.resume_step:
# self._load_optimizer_state()
# # Model was resumed, either due to a restart or a checkpoint
# # being specified at the command line.
# self.ema_params = [
# self._load_ema_parameters(rate) for rate in self.ema_rate
# ]
pass
else:
self.ema_params = [
copy.deepcopy(self.master_params) for _ in range(len(self.ema_rate))
]
print('Finish initiating train loop')
def _load_and_sync_parameters(self):
resume_checkpoint = find_resume_checkpoint() or self.resume_checkpoint
if resume_checkpoint:
self.resume_step = parse_resume_step_from_filename(resume_checkpoint)
if dist.get_rank() == 0:
# logger.log(f"loading model from checkpoint: {resume_checkpoint}...")
print(f"loading model from checkpoint: {resume_checkpoint}...")
self.model.load_state_dict(
dist_util.load_state_dict(
resume_checkpoint, map_location=dist_util.dev()
)
)
dist_util.sync_params(self.model.parameters())
def _load_ema_parameters(self, rate):
ema_params = copy.deepcopy(self.master_params)
main_checkpoint = find_resume_checkpoint() or self.resume_checkpoint
ema_checkpoint = find_ema_checkpoint(main_checkpoint, self.resume_step, rate)
if ema_checkpoint:
if dist.get_rank() == 0:
logger.log(f"loading EMA from checkpoint: {ema_checkpoint}...")
state_dict = dist_util.load_state_dict(
ema_checkpoint, map_location=dist_util.dev()
)
ema_params = self._state_dict_to_master_params(state_dict)
dist_util.sync_params(ema_params)
return ema_params
def _load_optimizer_state(self):
main_checkpoint = find_resume_checkpoint() or self.resume_checkpoint
opt_checkpoint = bf.join(
bf.dirname(main_checkpoint), f"opt{self.resume_step:06}.pt"
)
if bf.exists(opt_checkpoint):
logger.log(f"loading optimizer state from checkpoint: {opt_checkpoint}")
state_dict = dist_util.load_state_dict(
opt_checkpoint, map_location=dist_util.dev()
)
self.opt.load_state_dict(state_dict)
def _setup_fp16(self):
self.master_params = make_master_params(self.model_params)
self.model.convert_to_fp16()
def run_loop(self):
pbar = tqdm(total=self.lr_anneal_steps // self.world_size)
print('Start running train loop')
while (
not self.lr_anneal_steps
or self.step + self.resume_step < self.lr_anneal_steps // self.world_size
):
pbar.set_description(f"Step: {self.step + self.resume_step}")
batch = next(self.data)
# if self.step<3:
# print("RANK:",self.rank,"STEP:",self.step,"BATCH:",batch)
self.run_step(batch, cond=None)
if self.step % self.log_interval == 0:
# dist.barrier()
pass
# print('loggggg')
# logger.dumpkvs()
if self.eval_data is not None and self.step % self.eval_interval == 0:
# batch_eval, cond_eval = next(self.eval_data)
# self.forward_only(batch, cond)
print("eval on validation set")
pass # logger.dumpkvs()
if self.step % self.save_interval == 0 and self.step != 0:
self.save()
# Run for a finite amount of time in integration tests.
if os.environ.get("DIFFUSION_TRAINING_TEST", "") and self.step > 0:
return
self.step += 1
pbar.update(1)
# Save the last checkpoint if it wasn't already saved.
if (self.step - 1) % self.save_interval != 0:
self.save()
def run_step(self, batch, cond):
self.forward_backward(batch, cond)
if self.use_fp16:
self.optimize_fp16()
else:
self.optimize_normal()
self.log_step()
def forward_only(self, batch, cond):
with torch.no_grad():
zero_grad(self.model_params)
for i in range(0, batch.shape[0], self.microbatch):
micro = batch[i : i + self.microbatch].to(dist_util.dev())
micro_cond = {
k: v[i : i + self.microbatch].to(dist_util.dev())
for k, v in cond.items()
}
last_batch = (i + self.microbatch) >= batch.shape[0]
t, weights = self.schedule_sampler.sample(
micro.shape[0], dist_util.dev()
)
# print(micro_cond.keys())
compute_losses = functools.partial(
self.diffusion.training_losses,
self.ddp_model,
micro,
t,
micro_cond,
)
if last_batch or not self.use_ddp:
losses = compute_losses()
else:
with self.ddp_model.no_sync():
losses = compute_losses()
log_loss_dict(
self.diffusion,
t,
{f"eval_{k}": v * weights for k, v in losses.items()},
)
def forward_backward(self, batch, cond):
# zero_grad(self.model_params)
self.opt.zero_grad()
for i in range(0, batch[0].shape[0], self.microbatch):
# micro = batch[i : i + self.microbatch].to(self.rank)
# last_batch = (i + self.microbatch) >= batch.shape[0]
# t, weights = self.schedule_sampler.sample(micro.shape[0], self.rank)
micro = (
batch[0].to(self.rank), # selfies_ids
batch[1].to(self.rank), # caption_state
batch[2].to(self.rank), # caption_mask
batch[3].to(self.rank), # corrupted_selfies_ids
)
last_batch = True
t, weights = self.schedule_sampler.sample(micro[0].shape[0], self.rank)
compute_losses = functools.partial(
self.diffusion.training_losses,
self.ddp_model,
micro,
t,
None,
)
if last_batch or not self.use_ddp:
losses = compute_losses()
else:
with self.ddp_model.no_sync():
losses = compute_losses()
if isinstance(self.schedule_sampler, LossAwareSampler):
self.schedule_sampler.update_with_local_losses(
t, losses["loss"].detach()
)
loss = (losses["loss"] * weights).mean()
# print('----DEBUG-----',self.step,self.log_interval)
if self.step % self.log_interval == 0 and self.rank == 0:
print("rank0: ", self.step, loss.item())
wandb.log({"loss": loss.item()})
# log_loss_dict(
# self.diffusion, t, {k: v * weights for k, v in losses.items()}
# )
if self.use_fp16:
# loss_scale = 2 ** self.lg_loss_scale
# (loss * loss_scale).backward()
pass
else:
loss.backward()
def optimize_fp16(self):
if any(not torch.isfinite(p.grad).all() for p in self.model_params):
self.lg_loss_scale -= 1
logger.log(f"Found NaN, decreased lg_loss_scale to {self.lg_loss_scale}")
return
model_grads_to_master_grads(self.model_params, self.master_params)
self.master_params[0].grad.mul_(1.0 / (2**self.lg_loss_scale))
self._log_grad_norm()
self._anneal_lr()
self.opt.step()
for rate, params in zip(self.ema_rate, self.ema_params):
update_ema(params, self.master_params, rate=rate)
master_params_to_model_params(self.model_params, self.master_params)
self.lg_loss_scale += self.fp16_scale_growth
def grad_clip(self):
# print('doing gradient clipping')
max_grad_norm = self.gradient_clipping # 3.0
if hasattr(self.opt, "clip_grad_norm"):
# Some optimizers (like the sharded optimizer) have a specific way to do gradient clipping
self.opt.clip_grad_norm(max_grad_norm)
# else:
# assert False
# elif hasattr(self.model, "clip_grad_norm_"):
# # Some models (like FullyShardedDDP) have a specific way to do gradient clipping
# self.model.clip_grad_norm_(args.max_grad_norm)
else:
# Revert to normal clipping otherwise, handling Apex or full precision
torch.nn.utils.clip_grad_norm_(
self.model.parameters(), # amp.master_params(self.opt) if self.use_apex else
max_grad_norm,
)
def optimize_normal(self):
if self.gradient_clipping > 0:
self.grad_clip()
# self._log_grad_norm()
self._anneal_lr()
self.opt.step()
for rate, params in zip(self.ema_rate, self.ema_params):
update_ema(params, self.master_params, rate=rate)
def _log_grad_norm(self):
sqsum = 0.0
for p in self.master_params:
sqsum += (p.grad**2).sum().item()
# logger.logkv_mean("grad_norm", np.sqrt(sqsum))
def _anneal_lr(self):
if not self.lr_anneal_steps:
return
frac_done = (self.step + self.resume_step) / self.lr_anneal_steps
lr = self.lr * (1 - frac_done)
for param_group in self.opt.param_groups:
param_group["lr"] = lr
def log_step(self):
logger.logkv("step", self.step + self.resume_step)
# logger.logkv("samples", (self.step + self.resume_step + 1) * self.global_batch)
if self.use_fp16:
logger.logkv("lg_loss_scale", self.lg_loss_scale)
def save(self):
def save_checkpoint(rate, params):
state_dict = self._master_params_to_state_dict(params)
if dist.get_rank() == 0:
# logger.log(f"saving model {rate}...")
print(f"saving model {rate}...")
if not rate:
filename = f"PLAIN_model{((self.step+self.resume_step)*self.world_size):06d}.pt"
else:
filename = f"PLAIN_ema_{rate}_{((self.step+self.resume_step)*self.world_size):06d}.pt"
# print('writing to', bf.join(get_blob_logdir(), filename))
# print('writing to', bf.join(self.checkpoint_path, filename))
# with bf.BlobFile(bf.join(get_blob_logdir(), filename), "wb") as f:
# torch.save(state_dict, f)
with bf.BlobFile(
bf.join(self.checkpoint_path, filename), "wb"
) as f: # DEBUG **
torch.save(state_dict, f)
save_checkpoint(0, self.master_params)
for rate, params in zip(self.ema_rate, self.ema_params):
save_checkpoint(rate, params)
# if dist.get_rank() == 0: # DEBUG **
# with bf.BlobFile(
# bf.join(get_blob_logdir(), f"opt{(self.step+self.resume_step):06d}.pt"),
# "wb",
# ) as f:
# torch.save(self.opt.state_dict(), f)
dist.barrier()
def _master_params_to_state_dict(self, master_params):
if self.use_fp16:
master_params = unflatten_master_params(
list(self.model.parameters()), master_params # DEBUG **
)
state_dict = self.model.state_dict()
for i, (name, _value) in enumerate(self.model.named_parameters()):
assert name in state_dict
state_dict[name] = master_params[i]
return state_dict
def _state_dict_to_master_params(self, state_dict):
params = [state_dict[name] for name, _ in self.model.named_parameters()]
if self.use_fp16:
return make_master_params(params)
else:
return params
def parse_resume_step_from_filename(filename):
"""
Parse filenames of the form path/to/modelNNNNNN.pt, where NNNNNN is the
checkpoint's number of steps.
"""
split = filename.split("model")
if len(split) < 2:
return 0
split1 = split[-1].split(".")[0]
try:
return int(split1)
except ValueError:
return 0
def get_blob_logdir():
return os.environ.get("DIFFUSION_BLOB_LOGDIR", logger.get_dir())
def find_resume_checkpoint():
# On your infrastructure, you may want to override this to automatically
# discover the latest checkpoint on your blob storage, etc.
return None
def find_ema_checkpoint(main_checkpoint, step, rate):
if main_checkpoint is None:
return None
filename = f"ema_{rate}_{(step):06d}.pt"
path = bf.join(bf.dirname(main_checkpoint), filename)
if bf.exists(path):
return path
return None
def log_loss_dict(diffusion, ts, losses):
return
for key, values in losses.items():
logger.logkv_mean(key, values.mean().item())
# Log the quantiles (four quartiles, in particular).
for sub_t, sub_loss in zip(ts.cpu().numpy(), values.detach().cpu().numpy()):
quartile = int(4 * sub_t / diffusion.num_timesteps)
logger.logkv_mean(f"{key}_q{quartile}", sub_loss)
|