''' Code from https://github.com/blender-nlp/MolT5 ```bibtex @article{edwards2022translation, title={Translation between Molecules and Natural Language}, author={Edwards, Carl and Lai, Tuan and Ros, Kevin and Honke, Garrett and Ji, Heng}, journal={arXiv preprint arXiv:2204.11817}, year={2022} } ``` ''' import argparse import csv import os.path as osp import numpy as np from rdkit import Chem from rdkit.Chem import MACCSkeys from rdkit import DataStructs from rdkit.Chem import AllChem from rdkit import RDLogger RDLogger.DisableLog('rdApp.*') def evaluate(input_file, morgan_r, verbose=False): outputs = [] bad_mols = 0 with open(osp.join(input_file)) as f: reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE) for n, line in enumerate(reader): try: gt_smi = line['ground truth'] ot_smi = line['output'] gt_m = Chem.MolFromSmiles(gt_smi) ot_m = Chem.MolFromSmiles(ot_smi) if ot_m == None: raise ValueError('Bad SMILES') outputs.append((line['description'], gt_m, ot_m)) except: bad_mols += 1 validity_score = len(outputs)/(len(outputs)+bad_mols) if verbose: print('validity:', validity_score) MACCS_sims = [] morgan_sims = [] RDK_sims = [] enum_list = outputs for i, (desc, gt_m, ot_m) in enumerate(enum_list): if i % 100 == 0: if verbose: print(i, 'processed.') MACCS_sims.append(DataStructs.FingerprintSimilarity(MACCSkeys.GenMACCSKeys(gt_m), MACCSkeys.GenMACCSKeys(ot_m), metric=DataStructs.TanimotoSimilarity)) RDK_sims.append(DataStructs.FingerprintSimilarity(Chem.RDKFingerprint(gt_m), Chem.RDKFingerprint(ot_m), metric=DataStructs.TanimotoSimilarity)) morgan_sims.append(DataStructs.TanimotoSimilarity(AllChem.GetMorganFingerprint(gt_m,morgan_r), AllChem.GetMorganFingerprint(ot_m, morgan_r))) maccs_sims_score = np.mean(MACCS_sims) rdk_sims_score = np.mean(RDK_sims) morgan_sims_score = np.mean(morgan_sims) if verbose: print('Average MACCS Similarity:', maccs_sims_score) print('Average RDK Similarity:', rdk_sims_score) print('Average Morgan Similarity:', morgan_sims_score) return validity_score, maccs_sims_score, rdk_sims_score, morgan_sims_score if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--input_file', type=str, default='caption2smiles_example.txt', help='path where test generations are saved') parser.add_argument('--morgan_r', type=int, default=2, help='morgan fingerprint radius') args = parser.parse_args() evaluate(args.input_file, args.morgan_r, True)