import gradio as gr import base64 import os from openai import OpenAI import json import fitz from PIL import Image import io from settings_mgr import generate_download_settings_js, generate_upload_settings_js from doc2json import process_docx dump_controls = False log_to_console = False temp_files = [] def encode_image(image_data): """Generates a prefix for image base64 data in the required format for the four known image formats: png, jpeg, gif, and webp. Args: image_data: The image data, encoded in base64. Returns: A string containing the prefix. """ # Get the first few bytes of the image data. magic_number = image_data[:4] # Check the magic number to determine the image type. if magic_number.startswith(b'\x89PNG'): image_type = 'png' elif magic_number.startswith(b'\xFF\xD8'): image_type = 'jpeg' elif magic_number.startswith(b'GIF89a'): image_type = 'gif' elif magic_number.startswith(b'RIFF'): if image_data[8:12] == b'WEBP': image_type = 'webp' else: # Unknown image type. raise Exception("Unknown image type") else: # Unknown image type. raise Exception("Unknown image type") return f"data:image/{image_type};base64,{base64.b64encode(image_data).decode('utf-8')}" def process_pdf_img(pdf_fn: str): pdf = fitz.open(pdf_fn) message_parts = [] for page in pdf.pages(): # Create a transformation matrix for rendering at the calculated scale mat = fitz.Matrix(0.6, 0.6) # Render the page to a pixmap pix = page.get_pixmap(matrix=mat, alpha=False) # Convert pixmap to PIL Image img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples) # Convert PIL Image to bytes img_byte_arr = io.BytesIO() img.save(img_byte_arr, format='PNG') img_byte_arr = img_byte_arr.getvalue() # Encode image to base64 base64_encoded = base64.b64encode(img_byte_arr).decode('utf-8') # Construct the data URL image_url = f"data:image/png;base64,{base64_encoded}" # Append the message part message_parts.append({ "type": "text", "text": f"Page {page.number} of file '{pdf_fn}'" }) message_parts.append({ "type": "image_url", "image_url": { "url": image_url, "detail": "high" } }) pdf.close() return message_parts def encode_file(fn: str) -> list: user_msg_parts = [] if fn.endswith(".docx"): user_msg_parts.append({"type": "text", "text": process_docx(fn)}) elif fn.endswith(".pdf"): user_msg_parts.extend(process_pdf_img(fn)) else: with open(fn, mode="rb") as f: content = f.read() isImage = False if isinstance(content, bytes): try: # try to add as image content = encode_image(content) isImage = True except: # not an image, try text content = content.decode('utf-8', 'replace') else: content = str(content) if isImage: user_msg_parts.append({"type": "image_url", "image_url":{"url": content}}) else: user_msg_parts.append({"type": "text", "text": content}) return user_msg_parts def undo(history): history.pop() return history def dump(history): return str(history) def load_settings(): # Dummy Python function, actual loading is done in JS pass def save_settings(acc, sec, prompt, temp, tokens, model): # Dummy Python function, actual saving is done in JS pass def process_values_js(): return """ () => { return ["oai_key", "system_prompt", "seed"]; } """ def bot(message, history, oai_key, system_prompt, seed, temperature, max_tokens, model): try: client = OpenAI( api_key=oai_key ) if model == "whisper": result = "" whisper_prompt = system_prompt for human, assi in history: if human is not None: if type(human) is tuple: audio_fn = human[0] with open(audio_fn, "rb") as f: transcription = client.audio.transcriptions.create( model="whisper-1", prompt=whisper_prompt, file=f, response_format="text" ) whisper_prompt += f"\n{transcription}" result += f"\n``` transcript {audio_fn}\n {transcription}\n```" else: whisper_prompt += f"\n{human}" if assi is not None: whisper_prompt += f"\n{assi}" else: seed_i = None if seed: seed_i = int(seed) if log_to_console: print(f"bot history: {str(history)}") history_openai_format = [] user_msg_parts = [] if system_prompt: history_openai_format.append({"role": "system", "content": system_prompt}) for human, assi in history: if human is not None: if type(human) is tuple: user_msg_parts.extend(encode_file(human[0])) else: user_msg_parts.append({"type": "text", "text": human}) if assi is not None: if user_msg_parts: history_openai_format.append({"role": "user", "content": user_msg_parts}) user_msg_parts = [] history_openai_format.append({"role": "assistant", "content": assi}) if message['text']: user_msg_parts.append({"type": "text", "text": message['text']}) if message['files']: for file in message['files']: user_msg_parts.extend(encode_file(file['path'])) history_openai_format.append({"role": "user", "content": user_msg_parts}) user_msg_parts = [] if log_to_console: print(f"br_prompt: {str(history_openai_format)}") response = client.chat.completions.create( model=model, messages= history_openai_format, temperature=temperature, seed=seed_i, max_tokens=max_tokens ) if log_to_console: print(f"br_response: {str(response)}") result = response.choices[0].message.content if log_to_console: print(f"br_result: {str(history)}") except Exception as e: raise gr.Error(f"Error: {str(e)}") return result def import_history(history, file): with open(file.name, mode="rb") as f: content = f.read() if isinstance(content, bytes): content = content.decode('utf-8', 'replace') else: content = str(content) os.remove(file.name) # Deserialize the JSON content import_data = json.loads(content) # Check if 'history' key exists for backward compatibility if 'history' in import_data: history = import_data['history'] system_prompt.value = import_data.get('system_prompt', '') # Set default if not present else: # Assume it's an old format with only history data history = import_data return history, system_prompt.value # Return system prompt value to be set in the UI with gr.Blocks(delete_cache=(86400, 86400)) as demo: gr.Markdown("# OAI Chat (Nils' Version™️)") with gr.Accordion("Startup"): gr.Markdown("""Use of this interface permitted under the terms and conditions of the [MIT license](https://github.com/ndurner/oai_chat/blob/main/LICENSE). Third party terms and conditions apply, particularly those of the LLM vendor (OpenAI) and hosting provider (Hugging Face).""") oai_key = gr.Textbox(label="OpenAI API Key", elem_id="oai_key") model = gr.Dropdown(label="Model", value="gpt-4-turbo", allow_custom_value=True, elem_id="model", choices=["gpt-4-turbo", "gpt-4o", "gpt-4-turbo-preview", "gpt-4-1106-preview", "gpt-4", "gpt-4-vision-preview", "gpt-3.5-turbo", "gpt-3.5-turbo-16k", "gpt-3.5-turbo-1106", "whisper"]) system_prompt = gr.TextArea("You are a helpful yet diligent AI assistant. Answer faithfully and factually correct. Respond with 'I do not know' if uncertain.", label="System Prompt", lines=3, max_lines=250, elem_id="system_prompt") seed = gr.Textbox(label="Seed", elem_id="seed") temp = gr.Slider(0, 1, label="Temperature", elem_id="temp", value=1) max_tokens = gr.Slider(1, 4000, label="Max. Tokens", elem_id="max_tokens", value=800) save_button = gr.Button("Save Settings") load_button = gr.Button("Load Settings") dl_settings_button = gr.Button("Download Settings") ul_settings_button = gr.Button("Upload Settings") load_button.click(load_settings, js=""" () => { let elems = ['#oai_key textarea', '#system_prompt textarea', '#seed textarea', '#temp input', '#max_tokens input', '#model']; elems.forEach(elem => { let item = document.querySelector(elem); let event = new InputEvent('input', { bubbles: true }); item.value = localStorage.getItem(elem.split(" ")[0].slice(1)) || ''; item.dispatchEvent(event); }); } """) save_button.click(save_settings, [oai_key, system_prompt, seed, temp, max_tokens, model], js=""" (oai, sys, seed, temp, ntok, model) => { localStorage.setItem('oai_key', oai); localStorage.setItem('system_prompt', sys); localStorage.setItem('seed', seed); localStorage.setItem('temp', document.querySelector('#temp input').value); localStorage.setItem('max_tokens', document.querySelector('#max_tokens input').value); localStorage.setItem('model', model); } """) control_ids = [('oai_key', '#oai_key textarea'), ('system_prompt', '#system_prompt textarea'), ('seed', '#seed textarea'), ('temp', '#temp input'), ('max_tokens', '#max_tokens input'), ('model', '#model')] controls = [oai_key, system_prompt, seed, temp, max_tokens, model] dl_settings_button.click(None, controls, js=generate_download_settings_js("oai_chat_settings.bin", control_ids)) ul_settings_button.click(None, None, None, js=generate_upload_settings_js(control_ids)) chat = gr.ChatInterface(fn=bot, multimodal=True, additional_inputs=controls, retry_btn = None, autofocus = False) chat.textbox.file_count = "multiple" chatbot = chat.chatbot chatbot.show_copy_button = True chatbot.height = 350 if dump_controls: with gr.Row(): dmp_btn = gr.Button("Dump") txt_dmp = gr.Textbox("Dump") dmp_btn.click(dump, inputs=[chatbot], outputs=[txt_dmp]) with gr.Accordion("Import/Export", open = False): import_button = gr.UploadButton("History Import") export_button = gr.Button("History Export") export_button.click(lambda: None, [chatbot, system_prompt], js=""" (chat_history, system_prompt) => { const export_data = { history: chat_history, system_prompt: system_prompt }; const history_json = JSON.stringify(export_data); const blob = new Blob([history_json], {type: 'application/json'}); const url = URL.createObjectURL(blob); const a = document.createElement('a'); a.href = url; a.download = 'chat_history.json'; document.body.appendChild(a); a.click(); document.body.removeChild(a); URL.revokeObjectURL(url); } """) dl_button = gr.Button("File download") dl_button.click(lambda: None, [chatbot], js=""" (chat_history) => { // Attempt to extract content enclosed in backticks with an optional filename const contentRegex = /```(\\S*\\.(\\S+))?\\n?([\\s\\S]*?)```/; const match = contentRegex.exec(chat_history[chat_history.length - 1][1]); if (match && match[3]) { // Extract the content and the file extension const content = match[3]; const fileExtension = match[2] || 'txt'; // Default to .txt if extension is not found const filename = match[1] || `download.${fileExtension}`; // Create a Blob from the content const blob = new Blob([content], {type: `text/${fileExtension}`}); // Create a download link for the Blob const url = URL.createObjectURL(blob); const a = document.createElement('a'); a.href = url; // If the filename from the chat history doesn't have an extension, append the default a.download = filename.includes('.') ? filename : `${filename}.${fileExtension}`; document.body.appendChild(a); a.click(); document.body.removeChild(a); URL.revokeObjectURL(url); } else { // Inform the user if the content is malformed or missing alert('Sorry, the file content could not be found or is in an unrecognized format.'); } } """) import_button.upload(import_history, inputs=[chatbot, import_button], outputs=[chatbot, system_prompt]) demo.unload(lambda: [os.remove(file) for file in temp_files]) demo.queue().launch()