Spaces:
Sleeping
Sleeping
import os | |
import random | |
import sys | |
from typing import Sequence, Mapping, Any, Union | |
import torch | |
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
import spaces | |
from comfy import model_management | |
hf_hub_download(repo_id="Comfy-Org/stable-diffusion-v1-5-archive", filename="v1-5-pruned-emaonly-fp16.safetensors", local_dir="models/checkpoints") | |
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any: | |
"""Returns the value at the given index of a sequence or mapping. | |
If the object is a sequence (like list or string), returns the value at the given index. | |
If the object is a mapping (like a dictionary), returns the value at the index-th key. | |
Some return a dictionary, in these cases, we look for the "results" key | |
Args: | |
obj (Union[Sequence, Mapping]): The object to retrieve the value from. | |
index (int): The index of the value to retrieve. | |
Returns: | |
Any: The value at the given index. | |
Raises: | |
IndexError: If the index is out of bounds for the object and the object is not a mapping. | |
""" | |
try: | |
return obj[index] | |
except KeyError: | |
return obj["result"][index] | |
def find_path(name: str, path: str = None) -> str: | |
""" | |
Recursively looks at parent folders starting from the given path until it finds the given name. | |
Returns the path as a Path object if found, or None otherwise. | |
""" | |
# If no path is given, use the current working directory | |
if path is None: | |
path = os.getcwd() | |
# Check if the current directory contains the name | |
if name in os.listdir(path): | |
path_name = os.path.join(path, name) | |
print(f"{name} found: {path_name}") | |
return path_name | |
# Get the parent directory | |
parent_directory = os.path.dirname(path) | |
# If the parent directory is the same as the current directory, we've reached the root and stop the search | |
if parent_directory == path: | |
return None | |
# Recursively call the function with the parent directory | |
return find_path(name, parent_directory) | |
def add_comfyui_directory_to_sys_path() -> None: | |
""" | |
Add 'ComfyUI' to the sys.path | |
""" | |
comfyui_path = find_path("ComfyUI") | |
if comfyui_path is not None and os.path.isdir(comfyui_path): | |
sys.path.append(comfyui_path) | |
print(f"'{comfyui_path}' added to sys.path") | |
def add_extra_model_paths() -> None: | |
""" | |
Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path. | |
""" | |
try: | |
from main import load_extra_path_config | |
except ImportError: | |
print( | |
"Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead." | |
) | |
from utils.extra_config import load_extra_path_config | |
extra_model_paths = find_path("extra_model_paths.yaml") | |
if extra_model_paths is not None: | |
load_extra_path_config(extra_model_paths) | |
else: | |
print("Could not find the extra_model_paths config file.") | |
add_comfyui_directory_to_sys_path() | |
add_extra_model_paths() | |
def import_custom_nodes() -> None: | |
"""Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS | |
This function sets up a new asyncio event loop, initializes the PromptServer, | |
creates a PromptQueue, and initializes the custom nodes. | |
""" | |
import asyncio | |
import execution | |
from nodes import init_extra_nodes | |
import server | |
# Creating a new event loop and setting it as the default loop | |
loop = asyncio.new_event_loop() | |
asyncio.set_event_loop(loop) | |
# Creating an instance of PromptServer with the loop | |
server_instance = server.PromptServer(loop) | |
execution.PromptQueue(server_instance) | |
# Initializing custom nodes | |
init_extra_nodes() | |
from nodes import NODE_CLASS_MAPPINGS | |
checkpointloadersimple = NODE_CLASS_MAPPINGS["CheckpointLoaderSimple"]() | |
checkpointloadersimple_4 = checkpointloadersimple.load_checkpoint( | |
ckpt_name="v1-5-pruned-emaonly-fp16.safetensors" | |
) | |
#Add all the models that load a safetensors file | |
model_loaders = [checkpointloadersimple_4] | |
# Check which models are valid and how to best load them | |
valid_models = [ | |
getattr(loader[0], 'patcher', loader[0]) | |
for loader in model_loaders | |
if not isinstance(loader[0], dict) and not isinstance(getattr(loader[0], 'patcher', None), dict) | |
] | |
#Finally loads the models | |
model_management.load_models_gpu(valid_models) | |
#modify the duration for the average it takes for your worflow to run, in seconds | |
def generate_image(prompt): | |
import_custom_nodes() | |
with torch.inference_mode(): | |
# checkpointloadersimple_4 = checkpointloadersimple.load_checkpoint( | |
# ckpt_name="v1-5-pruned.safetensors" | |
# ) | |
emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]() | |
emptylatentimage_5 = emptylatentimage.generate( | |
width=512, height=512, batch_size=1 | |
) | |
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]() | |
cliptextencode_6 = cliptextencode.encode( | |
text=prompt, clip=get_value_at_index(checkpointloadersimple_4, 1) | |
) | |
cliptextencode_7 = cliptextencode.encode( | |
text="(worst quality, low quality, normal quality, lowres, low details, oversaturated, undersaturated, overexposed, underexposed, grayscale, bw, bad photo, bad photography, bad art:1.4), (watermark, signature, text font, username, error, logo, words, letters, digits, autograph, trademark, name:1.2), (blur, blurry, grainy), morbid, ugly, asymmetrical, mutated malformed, mutilated, poorly lit, bad shadow, draft, cropped, out of frame, cut off, censored, jpeg artifacts, out of focus, glitch, duplicate, (airbrushed, cartoon, anime, semi-realistic, cgi, render, blender, digital art, manga, amateur:1.3), (3D ,3D Game, 3D Game Scene, 3D Character:1.1), (bad hands, bad anatomy, bad body, bad face, bad teeth, bad arms, bad legs, deformities:1.3)", | |
clip=get_value_at_index(checkpointloadersimple_4, 1), | |
) | |
ksampler = NODE_CLASS_MAPPINGS["KSampler"]() | |
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]() | |
saveimage = NODE_CLASS_MAPPINGS["SaveImage"]() | |
for q in range(1): | |
ksampler_3 = ksampler.sample( | |
seed=random.randint(1, 2**64), | |
steps=35, | |
cfg=7, | |
sampler_name="dpmpp_2m", | |
scheduler="karras", | |
denoise=1, | |
model=get_value_at_index(checkpointloadersimple_4, 0), | |
positive=get_value_at_index(cliptextencode_6, 0), | |
negative=get_value_at_index(cliptextencode_7, 0), | |
latent_image=get_value_at_index(emptylatentimage_5, 0), | |
) | |
vaedecode_8 = vaedecode.decode( | |
samples=get_value_at_index(ksampler_3, 0), | |
vae=get_value_at_index(checkpointloadersimple_4, 2), | |
) | |
saveimage_9 = saveimage.save_images( | |
filename_prefix="ComfyUI", images=get_value_at_index(vaedecode_8, 0) | |
) | |
saved_path = f"output/{saveimage_9['ui']['images'][0]['filename']}" | |
return saved_path | |
# if __name__ == "__main__": | |
# main() | |
if __name__ == "__main__": | |
# Comment out the main() call in the exported Python code | |
# Start your Gradio app | |
with gr.Blocks() as app: | |
# Add a title | |
gr.Markdown("# Simple Example") | |
with gr.Row(): | |
with gr.Column(): | |
# Add an input | |
prompt_input = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...") | |
# Add a `Row` to include the groups side by side | |
# with gr.Row(): | |
# # First group includes structure image and depth strength | |
# with gr.Group(): | |
# # structure_image = gr.Image(label="Structure Image", type="filepath") | |
# # depth_strength = gr.Slider(minimum=0, maximum=50, value=15, label="Depth Strength") | |
# # Second group includes style image and style strength | |
# # with gr.Group(): | |
# # style_image = gr.Image(label="Style Image", type="filepath") | |
# # style_strength = gr.Slider(minimum=0, maximum=1, value=0.5, label="Style Strength") | |
# The generate button | |
generate_btn = gr.Button("Generate") | |
with gr.Column(): | |
# The output image | |
output_image = gr.Image(label="Generated Image") | |
# When clicking the button, it will trigger the `generate_image` function, with the respective inputs | |
# and the output an image | |
generate_btn.click( | |
fn=generate_image, | |
# inputs=[prompt_input, structure_image, style_image, depth_strength, style_strength], | |
inputs=[prompt_input], | |
outputs=[output_image] | |
) | |
app.launch(share=True) |