Nef Caballero
fix attempt for HG error 3
6989988
import os
import random
import sys
from typing import Sequence, Mapping, Any, Union
import torch
import gradio as gr
from huggingface_hub import hf_hub_download
import spaces
from comfy import model_management
hf_hub_download(repo_id="Comfy-Org/stable-diffusion-v1-5-archive", filename="v1-5-pruned-emaonly-fp16.safetensors", local_dir="models/checkpoints")
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
"""Returns the value at the given index of a sequence or mapping.
If the object is a sequence (like list or string), returns the value at the given index.
If the object is a mapping (like a dictionary), returns the value at the index-th key.
Some return a dictionary, in these cases, we look for the "results" key
Args:
obj (Union[Sequence, Mapping]): The object to retrieve the value from.
index (int): The index of the value to retrieve.
Returns:
Any: The value at the given index.
Raises:
IndexError: If the index is out of bounds for the object and the object is not a mapping.
"""
try:
return obj[index]
except KeyError:
return obj["result"][index]
def find_path(name: str, path: str = None) -> str:
"""
Recursively looks at parent folders starting from the given path until it finds the given name.
Returns the path as a Path object if found, or None otherwise.
"""
# If no path is given, use the current working directory
if path is None:
path = os.getcwd()
# Check if the current directory contains the name
if name in os.listdir(path):
path_name = os.path.join(path, name)
print(f"{name} found: {path_name}")
return path_name
# Get the parent directory
parent_directory = os.path.dirname(path)
# If the parent directory is the same as the current directory, we've reached the root and stop the search
if parent_directory == path:
return None
# Recursively call the function with the parent directory
return find_path(name, parent_directory)
def add_comfyui_directory_to_sys_path() -> None:
"""
Add 'ComfyUI' to the sys.path
"""
comfyui_path = find_path("ComfyUI")
if comfyui_path is not None and os.path.isdir(comfyui_path):
sys.path.append(comfyui_path)
print(f"'{comfyui_path}' added to sys.path")
def add_extra_model_paths() -> None:
"""
Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path.
"""
try:
from main import load_extra_path_config
except ImportError:
print(
"Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead."
)
from utils.extra_config import load_extra_path_config
extra_model_paths = find_path("extra_model_paths.yaml")
if extra_model_paths is not None:
load_extra_path_config(extra_model_paths)
else:
print("Could not find the extra_model_paths config file.")
add_comfyui_directory_to_sys_path()
add_extra_model_paths()
def import_custom_nodes() -> None:
"""Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS
This function sets up a new asyncio event loop, initializes the PromptServer,
creates a PromptQueue, and initializes the custom nodes.
"""
import asyncio
import execution
from nodes import init_extra_nodes
import server
# Creating a new event loop and setting it as the default loop
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
# Creating an instance of PromptServer with the loop
server_instance = server.PromptServer(loop)
execution.PromptQueue(server_instance)
# Initializing custom nodes
init_extra_nodes()
from nodes import NODE_CLASS_MAPPINGS
checkpointloadersimple = NODE_CLASS_MAPPINGS["CheckpointLoaderSimple"]()
checkpointloadersimple_4 = checkpointloadersimple.load_checkpoint(
ckpt_name="v1-5-pruned-emaonly-fp16.safetensors"
)
#Add all the models that load a safetensors file
model_loaders = [checkpointloadersimple_4]
# Check which models are valid and how to best load them
valid_models = [
getattr(loader[0], 'patcher', loader[0])
for loader in model_loaders
if not isinstance(loader[0], dict) and not isinstance(getattr(loader[0], 'patcher', None), dict)
]
#Finally loads the models
model_management.load_models_gpu(valid_models)
@spaces.GPU(duration=60) #modify the duration for the average it takes for your worflow to run, in seconds
def generate_image(prompt):
import_custom_nodes()
with torch.inference_mode():
# checkpointloadersimple_4 = checkpointloadersimple.load_checkpoint(
# ckpt_name="v1-5-pruned.safetensors"
# )
emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]()
emptylatentimage_5 = emptylatentimage.generate(
width=512, height=512, batch_size=1
)
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
cliptextencode_6 = cliptextencode.encode(
text=prompt, clip=get_value_at_index(checkpointloadersimple_4, 1)
)
cliptextencode_7 = cliptextencode.encode(
text="(worst quality, low quality, normal quality, lowres, low details, oversaturated, undersaturated, overexposed, underexposed, grayscale, bw, bad photo, bad photography, bad art:1.4), (watermark, signature, text font, username, error, logo, words, letters, digits, autograph, trademark, name:1.2), (blur, blurry, grainy), morbid, ugly, asymmetrical, mutated malformed, mutilated, poorly lit, bad shadow, draft, cropped, out of frame, cut off, censored, jpeg artifacts, out of focus, glitch, duplicate, (airbrushed, cartoon, anime, semi-realistic, cgi, render, blender, digital art, manga, amateur:1.3), (3D ,3D Game, 3D Game Scene, 3D Character:1.1), (bad hands, bad anatomy, bad body, bad face, bad teeth, bad arms, bad legs, deformities:1.3)",
clip=get_value_at_index(checkpointloadersimple_4, 1),
)
ksampler = NODE_CLASS_MAPPINGS["KSampler"]()
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
saveimage = NODE_CLASS_MAPPINGS["SaveImage"]()
for q in range(1):
ksampler_3 = ksampler.sample(
seed=random.randint(1, 2**64),
steps=35,
cfg=7,
sampler_name="dpmpp_2m",
scheduler="karras",
denoise=1,
model=get_value_at_index(checkpointloadersimple_4, 0),
positive=get_value_at_index(cliptextencode_6, 0),
negative=get_value_at_index(cliptextencode_7, 0),
latent_image=get_value_at_index(emptylatentimage_5, 0),
)
vaedecode_8 = vaedecode.decode(
samples=get_value_at_index(ksampler_3, 0),
vae=get_value_at_index(checkpointloadersimple_4, 2),
)
saveimage_9 = saveimage.save_images(
filename_prefix="ComfyUI", images=get_value_at_index(vaedecode_8, 0)
)
saved_path = f"output/{saveimage_9['ui']['images'][0]['filename']}"
return saved_path
# if __name__ == "__main__":
# main()
if __name__ == "__main__":
# Comment out the main() call in the exported Python code
# Start your Gradio app
with gr.Blocks() as app:
# Add a title
gr.Markdown("# Simple Example")
with gr.Row():
with gr.Column():
# Add an input
prompt_input = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...")
# Add a `Row` to include the groups side by side
# with gr.Row():
# # First group includes structure image and depth strength
# with gr.Group():
# # structure_image = gr.Image(label="Structure Image", type="filepath")
# # depth_strength = gr.Slider(minimum=0, maximum=50, value=15, label="Depth Strength")
# # Second group includes style image and style strength
# # with gr.Group():
# # style_image = gr.Image(label="Style Image", type="filepath")
# # style_strength = gr.Slider(minimum=0, maximum=1, value=0.5, label="Style Strength")
# The generate button
generate_btn = gr.Button("Generate")
with gr.Column():
# The output image
output_image = gr.Image(label="Generated Image")
# When clicking the button, it will trigger the `generate_image` function, with the respective inputs
# and the output an image
generate_btn.click(
fn=generate_image,
# inputs=[prompt_input, structure_image, style_image, depth_strength, style_strength],
inputs=[prompt_input],
outputs=[output_image]
)
app.launch(share=True)