Spaces:
Sleeping
Sleeping
Nef Caballero
commited on
Commit
·
be23175
1
Parent(s):
dfac101
starting over simple example
Browse files- app.py +56 -241
- requirements.txt +4 -3
app.py
CHANGED
@@ -6,15 +6,9 @@ import torch
|
|
6 |
import gradio as gr
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
import spaces
|
9 |
-
from comfy import model_management
|
10 |
|
11 |
-
hf_hub_download(repo_id="
|
12 |
-
|
13 |
-
hf_hub_download(repo_id="Comfy-Org/sigclip_vision_384", filename="sigclip_vision_patch14_384.safetensors", local_dir="models/clip_vision")
|
14 |
-
hf_hub_download(repo_id="Kijai/DepthAnythingV2-safetensors", filename="depth_anything_v2_vitl_fp32.safetensors", local_dir="models/depthanything")
|
15 |
-
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", filename="ae.safetensors", local_dir="models/vae/FLUX1")
|
16 |
-
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="clip_l.safetensors", local_dir="models/text_encoders")
|
17 |
-
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="t5xxl_fp16.safetensors", local_dir="models/text_encoders/t5")
|
18 |
|
19 |
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
|
20 |
"""Returns the value at the given index of a sequence or mapping.
|
@@ -125,266 +119,86 @@ def import_custom_nodes() -> None:
|
|
125 |
|
126 |
from nodes import NODE_CLASS_MAPPINGS
|
127 |
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
#To be added to `model_loaders` as it loads a model
|
132 |
-
dualcliploader_357 = dualcliploader.load_clip(
|
133 |
-
clip_name1="t5/t5xxl_fp16.safetensors",
|
134 |
-
clip_name2="clip_l.safetensors",
|
135 |
-
type="flux",
|
136 |
-
)
|
137 |
-
cr_clip_input_switch = NODE_CLASS_MAPPINGS["CR Clip Input Switch"]()
|
138 |
-
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
|
139 |
-
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
|
140 |
-
imageresize = NODE_CLASS_MAPPINGS["ImageResize+"]()
|
141 |
-
getimagesizeandcount = NODE_CLASS_MAPPINGS["GetImageSizeAndCount"]()
|
142 |
-
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
|
143 |
-
|
144 |
-
#To be added to `model_loaders` as it loads a model
|
145 |
-
vaeloader_359 = vaeloader.load_vae(vae_name="FLUX1/ae.safetensors")
|
146 |
-
|
147 |
-
vaeencode = NODE_CLASS_MAPPINGS["VAEEncode"]()
|
148 |
-
unetloader = NODE_CLASS_MAPPINGS["UNETLoader"]()
|
149 |
-
|
150 |
-
#To be added to `model_loaders` as it loads a model
|
151 |
-
unetloader_358 = unetloader.load_unet(
|
152 |
-
unet_name="flux1-depth-dev.safetensors", weight_dtype="default"
|
153 |
-
)
|
154 |
-
ksamplerselect = NODE_CLASS_MAPPINGS["KSamplerSelect"]()
|
155 |
-
randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]()
|
156 |
-
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
|
157 |
-
depthanything_v2 = NODE_CLASS_MAPPINGS["DepthAnything_V2"]()
|
158 |
-
downloadandloaddepthanythingv2model = NODE_CLASS_MAPPINGS[
|
159 |
-
"DownloadAndLoadDepthAnythingV2Model"
|
160 |
-
]()
|
161 |
-
|
162 |
-
#To be added to `model_loaders` as it loads a model
|
163 |
-
downloadandloaddepthanythingv2model_437 = (
|
164 |
-
downloadandloaddepthanythingv2model.loadmodel(
|
165 |
-
model="depth_anything_v2_vitl_fp32.safetensors"
|
166 |
-
)
|
167 |
-
)
|
168 |
-
instructpixtopixconditioning = NODE_CLASS_MAPPINGS[
|
169 |
-
"InstructPixToPixConditioning"
|
170 |
-
]()
|
171 |
-
text_multiline_454 = text_multiline.text_multiline(text="FLUX_Redux")
|
172 |
-
clipvisionloader = NODE_CLASS_MAPPINGS["CLIPVisionLoader"]()
|
173 |
-
|
174 |
-
#To be added to `model_loaders` as it loads a model
|
175 |
-
clipvisionloader_438 = clipvisionloader.load_clip(
|
176 |
-
clip_name="sigclip_vision_patch14_384.safetensors"
|
177 |
-
)
|
178 |
-
clipvisionencode = NODE_CLASS_MAPPINGS["CLIPVisionEncode"]()
|
179 |
-
stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]()
|
180 |
-
|
181 |
-
#To be added to `model_loaders` as it loads a model
|
182 |
-
stylemodelloader_441 = stylemodelloader.load_style_model(
|
183 |
-
style_model_name="flux1-redux-dev.safetensors"
|
184 |
-
)
|
185 |
-
text_multiline = NODE_CLASS_MAPPINGS["Text Multiline"]()
|
186 |
-
emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]()
|
187 |
-
cr_conditioning_input_switch = NODE_CLASS_MAPPINGS[
|
188 |
-
"CR Conditioning Input Switch"
|
189 |
-
]()
|
190 |
-
cr_model_input_switch = NODE_CLASS_MAPPINGS["CR Model Input Switch"]()
|
191 |
-
stylemodelapplyadvanced = NODE_CLASS_MAPPINGS["StyleModelApplyAdvanced"]()
|
192 |
-
basicguider = NODE_CLASS_MAPPINGS["BasicGuider"]()
|
193 |
-
basicscheduler = NODE_CLASS_MAPPINGS["BasicScheduler"]()
|
194 |
-
samplercustomadvanced = NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]()
|
195 |
-
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
|
196 |
-
saveimage = NODE_CLASS_MAPPINGS["SaveImage"]()
|
197 |
-
imagecrop = NODE_CLASS_MAPPINGS["ImageCrop+"]()
|
198 |
-
|
199 |
-
#Add all the models that load a safetensors file
|
200 |
-
model_loaders = [dualcliploader_357, vaeloader_359, unetloader_358, clipvisionloader_438, stylemodelloader_441, downloadandloaddepthanythingv2model_437]
|
201 |
-
|
202 |
-
# Check which models are valid and how to best load them
|
203 |
-
valid_models = [
|
204 |
-
getattr(loader[0], 'patcher', loader[0])
|
205 |
-
for loader in model_loaders
|
206 |
-
if not isinstance(loader[0], dict) and not isinstance(getattr(loader[0], 'patcher', None), dict)
|
207 |
-
]
|
208 |
-
|
209 |
-
#Finally loads the models
|
210 |
-
model_management.load_models_gpu(valid_models)
|
211 |
-
|
212 |
-
@spaces.GPU(duration=60)
|
213 |
-
def generate_image(prompt, structure_image, style_image, depth_strength, style_strength):
|
214 |
import_custom_nodes()
|
215 |
with torch.inference_mode():
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
intconstant_84 = intconstant.get_value(value=1024)
|
220 |
-
|
221 |
-
cr_clip_input_switch_319 = cr_clip_input_switch.switch(
|
222 |
-
Input=1,
|
223 |
-
clip1=get_value_at_index(dualcliploader_357, 0),
|
224 |
-
clip2=get_value_at_index(dualcliploader_357, 0),
|
225 |
-
)
|
226 |
-
|
227 |
-
cliptextencode_174 = cliptextencode.encode(
|
228 |
-
text=prompt,
|
229 |
-
clip=get_value_at_index(cr_clip_input_switch_319, 0),
|
230 |
-
)
|
231 |
-
|
232 |
-
cliptextencode_175 = cliptextencode.encode(
|
233 |
-
text="purple", clip=get_value_at_index(cr_clip_input_switch_319, 0)
|
234 |
-
)
|
235 |
-
|
236 |
-
loadimage_429 = loadimage.load_image(image=structure_image)
|
237 |
-
|
238 |
-
imageresize_72 = imageresize.execute(
|
239 |
-
width=get_value_at_index(intconstant_83, 0),
|
240 |
-
height=get_value_at_index(intconstant_84, 0),
|
241 |
-
interpolation="bicubic",
|
242 |
-
method="keep proportion",
|
243 |
-
condition="always",
|
244 |
-
multiple_of=16,
|
245 |
-
image=get_value_at_index(loadimage_429, 0),
|
246 |
-
)
|
247 |
-
|
248 |
-
getimagesizeandcount_360 = getimagesizeandcount.getsize(
|
249 |
-
image=get_value_at_index(imageresize_72, 0)
|
250 |
-
)
|
251 |
-
|
252 |
-
vaeencode_197 = vaeencode.encode(
|
253 |
-
pixels=get_value_at_index(getimagesizeandcount_360, 0),
|
254 |
-
vae=get_value_at_index(vaeloader_359, 0),
|
255 |
-
)
|
256 |
-
|
257 |
-
ksamplerselect_363 = ksamplerselect.get_sampler(sampler_name="euler")
|
258 |
-
|
259 |
-
randomnoise_365 = randomnoise.get_noise(noise_seed=random.randint(1, 2**64))
|
260 |
-
|
261 |
-
|
262 |
-
fluxguidance_430 = fluxguidance.append(
|
263 |
-
guidance=15, conditioning=get_value_at_index(cliptextencode_174, 0)
|
264 |
-
)
|
265 |
-
|
266 |
-
depthanything_v2_436 = depthanything_v2.process(
|
267 |
-
da_model=get_value_at_index(downloadandloaddepthanythingv2model_437, 0),
|
268 |
-
images=get_value_at_index(getimagesizeandcount_360, 0),
|
269 |
)
|
270 |
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
vae=get_value_at_index(vaeloader_359, 0),
|
275 |
-
pixels=get_value_at_index(depthanything_v2_436, 0),
|
276 |
)
|
277 |
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
crop="center",
|
282 |
-
clip_vision=get_value_at_index(clipvisionloader_438, 0),
|
283 |
-
image=get_value_at_index(loadimage_440, 0),
|
284 |
)
|
285 |
-
|
286 |
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
batch_size=1,
|
291 |
)
|
292 |
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
conditioning2=get_value_at_index(instructpixtopixconditioning_431, 0),
|
297 |
-
)
|
298 |
-
|
299 |
-
cr_conditioning_input_switch_272 = cr_conditioning_input_switch.switch(
|
300 |
-
Input=1,
|
301 |
-
conditioning1=get_value_at_index(instructpixtopixconditioning_431, 1),
|
302 |
-
conditioning2=get_value_at_index(instructpixtopixconditioning_431, 1),
|
303 |
-
)
|
304 |
-
|
305 |
-
cr_model_input_switch_320 = cr_model_input_switch.switch(
|
306 |
-
Input=1,
|
307 |
-
model1=get_value_at_index(unetloader_358, 0),
|
308 |
-
model2=get_value_at_index(unetloader_358, 0),
|
309 |
-
)
|
310 |
-
|
311 |
-
stylemodelapplyadvanced_442 = stylemodelapplyadvanced.apply_stylemodel(
|
312 |
-
strength=style_strength,
|
313 |
-
conditioning=get_value_at_index(instructpixtopixconditioning_431, 0),
|
314 |
-
style_model=get_value_at_index(stylemodelloader_441, 0),
|
315 |
-
clip_vision_output=get_value_at_index(clipvisionencode_439, 0),
|
316 |
-
)
|
317 |
-
|
318 |
-
basicguider_366 = basicguider.get_guider(
|
319 |
-
model=get_value_at_index(cr_model_input_switch_320, 0),
|
320 |
-
conditioning=get_value_at_index(stylemodelapplyadvanced_442, 0),
|
321 |
-
)
|
322 |
-
|
323 |
-
basicscheduler_364 = basicscheduler.get_sigmas(
|
324 |
-
scheduler="simple",
|
325 |
-
steps=28,
|
326 |
-
denoise=1,
|
327 |
-
model=get_value_at_index(cr_model_input_switch_320, 0),
|
328 |
-
)
|
329 |
-
|
330 |
-
samplercustomadvanced_362 = samplercustomadvanced.sample(
|
331 |
-
noise=get_value_at_index(randomnoise_365, 0),
|
332 |
-
guider=get_value_at_index(basicguider_366, 0),
|
333 |
-
sampler=get_value_at_index(ksamplerselect_363, 0),
|
334 |
-
sigmas=get_value_at_index(basicscheduler_364, 0),
|
335 |
-
latent_image=get_value_at_index(emptylatentimage_10, 0),
|
336 |
-
)
|
337 |
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
342 |
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
|
|
|
|
|
|
|
348 |
|
349 |
-
|
350 |
-
|
351 |
-
conditioning=get_value_at_index(cr_conditioning_input_switch_272, 0),
|
352 |
-
)
|
353 |
|
354 |
-
imagecrop_447 = imagecrop.execute(
|
355 |
-
width=2000,
|
356 |
-
height=2000,
|
357 |
-
position="top-center",
|
358 |
-
x_offset=0,
|
359 |
-
y_offset=0,
|
360 |
-
image=get_value_at_index(loadimage_440, 0),
|
361 |
-
)
|
362 |
|
363 |
-
|
364 |
-
|
365 |
|
366 |
if __name__ == "__main__":
|
367 |
-
# Comment out the main() call
|
368 |
|
369 |
# Start your Gradio app
|
370 |
with gr.Blocks() as app:
|
371 |
# Add a title
|
372 |
-
gr.Markdown("#
|
373 |
|
374 |
with gr.Row():
|
375 |
with gr.Column():
|
376 |
# Add an input
|
377 |
prompt_input = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...")
|
378 |
# Add a `Row` to include the groups side by side
|
379 |
-
with gr.Row():
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
|
389 |
# The generate button
|
390 |
generate_btn = gr.Button("Generate")
|
@@ -397,7 +211,8 @@ if __name__ == "__main__":
|
|
397 |
# and the output an image
|
398 |
generate_btn.click(
|
399 |
fn=generate_image,
|
400 |
-
inputs=[prompt_input, structure_image, style_image, depth_strength, style_strength],
|
|
|
401 |
outputs=[output_image]
|
402 |
)
|
403 |
app.launch(share=True)
|
|
|
6 |
import gradio as gr
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
import spaces
|
|
|
9 |
|
10 |
+
hf_hub_download(repo_id="Comfy-Org/stable-diffusion-v1-5-archive", filename="v1-5-pruned-emaonly-fp16.safetensors", local_dir="models/checkpoints")
|
11 |
+
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
|
14 |
"""Returns the value at the given index of a sequence or mapping.
|
|
|
119 |
|
120 |
from nodes import NODE_CLASS_MAPPINGS
|
121 |
|
122 |
+
@spaces.GPU(duration=60) #modify the duration for the average it takes for your worflow to run, in seconds
|
123 |
+
def generate_image(prompt):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
import_custom_nodes()
|
125 |
with torch.inference_mode():
|
126 |
+
checkpointloadersimple = NODE_CLASS_MAPPINGS["CheckpointLoaderSimple"]()
|
127 |
+
checkpointloadersimple_4 = checkpointloadersimple.load_checkpoint(
|
128 |
+
ckpt_name="v1-5-pruned.safetensors"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
)
|
130 |
|
131 |
+
emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]()
|
132 |
+
emptylatentimage_5 = emptylatentimage.generate(
|
133 |
+
width=512, height=512, batch_size=1
|
|
|
|
|
134 |
)
|
135 |
|
136 |
+
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
|
137 |
+
cliptextencode_6 = cliptextencode.encode(
|
138 |
+
text=prompt, clip=get_value_at_index(checkpointloadersimple_4, 1)
|
|
|
|
|
|
|
139 |
)
|
|
|
140 |
|
141 |
+
cliptextencode_7 = cliptextencode.encode(
|
142 |
+
text="(worst quality, low quality, normal quality, lowres, low details, oversaturated, undersaturated, overexposed, underexposed, grayscale, bw, bad photo, bad photography, bad art:1.4), (watermark, signature, text font, username, error, logo, words, letters, digits, autograph, trademark, name:1.2), (blur, blurry, grainy), morbid, ugly, asymmetrical, mutated malformed, mutilated, poorly lit, bad shadow, draft, cropped, out of frame, cut off, censored, jpeg artifacts, out of focus, glitch, duplicate, (airbrushed, cartoon, anime, semi-realistic, cgi, render, blender, digital art, manga, amateur:1.3), (3D ,3D Game, 3D Game Scene, 3D Character:1.1), (bad hands, bad anatomy, bad body, bad face, bad teeth, bad arms, bad legs, deformities:1.3)",
|
143 |
+
clip=get_value_at_index(checkpointloadersimple_4, 1),
|
|
|
144 |
)
|
145 |
|
146 |
+
ksampler = NODE_CLASS_MAPPINGS["KSampler"]()
|
147 |
+
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
|
148 |
+
saveimage = NODE_CLASS_MAPPINGS["SaveImage"]()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
+
for q in range(1):
|
151 |
+
ksampler_3 = ksampler.sample(
|
152 |
+
seed=random.randint(1, 2**64),
|
153 |
+
steps=35,
|
154 |
+
cfg=7,
|
155 |
+
sampler_name="dpmpp_2m",
|
156 |
+
scheduler="karras",
|
157 |
+
denoise=1,
|
158 |
+
model=get_value_at_index(checkpointloadersimple_4, 0),
|
159 |
+
positive=get_value_at_index(cliptextencode_6, 0),
|
160 |
+
negative=get_value_at_index(cliptextencode_7, 0),
|
161 |
+
latent_image=get_value_at_index(emptylatentimage_5, 0),
|
162 |
+
)
|
163 |
|
164 |
+
vaedecode_8 = vaedecode.decode(
|
165 |
+
samples=get_value_at_index(ksampler_3, 0),
|
166 |
+
vae=get_value_at_index(checkpointloadersimple_4, 2),
|
167 |
+
)
|
168 |
|
169 |
+
saveimage_9 = saveimage.save_images(
|
170 |
+
filename_prefix="ComfyUI", images=get_value_at_index(vaedecode_8, 0)
|
171 |
+
)
|
172 |
|
173 |
+
saved_path = f"output/{saveimage_9['ui']['images'][0]['filename']}"
|
174 |
+
return saved_path
|
|
|
|
|
175 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
+
# if __name__ == "__main__":
|
178 |
+
# main()
|
179 |
|
180 |
if __name__ == "__main__":
|
181 |
+
# Comment out the main() call in the exported Python code
|
182 |
|
183 |
# Start your Gradio app
|
184 |
with gr.Blocks() as app:
|
185 |
# Add a title
|
186 |
+
gr.Markdown("# Simple Example")
|
187 |
|
188 |
with gr.Row():
|
189 |
with gr.Column():
|
190 |
# Add an input
|
191 |
prompt_input = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...")
|
192 |
# Add a `Row` to include the groups side by side
|
193 |
+
# with gr.Row():
|
194 |
+
# # First group includes structure image and depth strength
|
195 |
+
# with gr.Group():
|
196 |
+
# # structure_image = gr.Image(label="Structure Image", type="filepath")
|
197 |
+
# # depth_strength = gr.Slider(minimum=0, maximum=50, value=15, label="Depth Strength")
|
198 |
+
# # Second group includes style image and style strength
|
199 |
+
# # with gr.Group():
|
200 |
+
# # style_image = gr.Image(label="Style Image", type="filepath")
|
201 |
+
# # style_strength = gr.Slider(minimum=0, maximum=1, value=0.5, label="Style Strength")
|
202 |
|
203 |
# The generate button
|
204 |
generate_btn = gr.Button("Generate")
|
|
|
211 |
# and the output an image
|
212 |
generate_btn.click(
|
213 |
fn=generate_image,
|
214 |
+
# inputs=[prompt_input, structure_image, style_image, depth_strength, style_strength],
|
215 |
+
inputs=[prompt_input],
|
216 |
outputs=[output_image]
|
217 |
)
|
218 |
app.launch(share=True)
|
requirements.txt
CHANGED
@@ -13,12 +13,13 @@ Pillow
|
|
13 |
scipy
|
14 |
tqdm
|
15 |
psutil
|
|
|
|
|
16 |
|
17 |
#non essential dependencies:
|
18 |
kornia>=0.7.1
|
19 |
spandrel
|
20 |
soundfile
|
21 |
|
22 |
-
# needed for huggingface spaces
|
23 |
-
accelerate
|
24 |
-
huggingface_hub
|
|
|
13 |
scipy
|
14 |
tqdm
|
15 |
psutil
|
16 |
+
gradio>=4.0.0
|
17 |
+
huggingface_hub
|
18 |
|
19 |
#non essential dependencies:
|
20 |
kornia>=0.7.1
|
21 |
spandrel
|
22 |
soundfile
|
23 |
|
24 |
+
# needed for huggingface spaces
|
25 |
+
accelerate
|
|