Spaces:
Runtime error
Runtime error
add single file script
Browse files- scripts/wdtagger3-onnx.py +475 -0
scripts/wdtagger3-onnx.py
ADDED
@@ -0,0 +1,475 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import argparse
|
3 |
+
import logging
|
4 |
+
from dataclasses import dataclass
|
5 |
+
from os import PathLike
|
6 |
+
from pathlib import Path
|
7 |
+
from typing import Generator, Optional, Tuple
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import onnxruntime as rt
|
11 |
+
from huggingface_hub import hf_hub_download
|
12 |
+
from huggingface_hub.utils import HfHubHTTPError
|
13 |
+
from pandas import DataFrame, read_csv
|
14 |
+
from PIL import Image
|
15 |
+
from torch.utils.data import DataLoader, Dataset
|
16 |
+
from tqdm import tqdm
|
17 |
+
|
18 |
+
# allowed extensions
|
19 |
+
IMAGE_EXTENSIONS = [".jpg", ".jpeg", ".png", ".gif", ".webp", ".bmp", ".tiff", ".tif"]
|
20 |
+
# image input shape
|
21 |
+
IMAGE_SIZE = 448
|
22 |
+
|
23 |
+
MODEL_VARIANTS: dict[str, str] = {
|
24 |
+
"swinv2": "SmilingWolf/wd-swinv2-tagger-v3",
|
25 |
+
"convnext": "SmilingWolf/wd-convnext-tagger-v3",
|
26 |
+
"vit": "SmilingWolf/wd-vit-tagger-v3",
|
27 |
+
}
|
28 |
+
|
29 |
+
|
30 |
+
@dataclass
|
31 |
+
class LabelData:
|
32 |
+
names: list[str]
|
33 |
+
rating: list[np.int64]
|
34 |
+
general: list[np.int64]
|
35 |
+
character: list[np.int64]
|
36 |
+
|
37 |
+
|
38 |
+
@dataclass
|
39 |
+
class ImageLabels:
|
40 |
+
caption: str
|
41 |
+
booru: str
|
42 |
+
rating: str
|
43 |
+
general: dict[str, float]
|
44 |
+
character: dict[str, float]
|
45 |
+
ratings: dict[str, float]
|
46 |
+
|
47 |
+
|
48 |
+
logging.basicConfig(level=logging.WARNING, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s")
|
49 |
+
logger = logging.getLogger()
|
50 |
+
logger.setLevel(logging.INFO)
|
51 |
+
|
52 |
+
|
53 |
+
## Model loading functions
|
54 |
+
def download_onnx(
|
55 |
+
repo_id: str,
|
56 |
+
filename: str = "model.onnx",
|
57 |
+
revision: Optional[str] = None,
|
58 |
+
token: Optional[str] = None,
|
59 |
+
) -> Path:
|
60 |
+
if not filename.endswith(".onnx"):
|
61 |
+
filename += ".onnx"
|
62 |
+
|
63 |
+
model_path = hf_hub_download(repo_id=repo_id, filename=filename, revision=revision, token=token)
|
64 |
+
return Path(model_path).resolve()
|
65 |
+
|
66 |
+
|
67 |
+
def create_session(
|
68 |
+
repo_id: str,
|
69 |
+
revision: Optional[str] = None,
|
70 |
+
token: Optional[str] = None,
|
71 |
+
) -> rt.InferenceSession:
|
72 |
+
model_path = download_onnx(repo_id, revision=revision, token=token)
|
73 |
+
if not model_path.is_file():
|
74 |
+
model_path = model_path.joinpath("model.onnx")
|
75 |
+
if not model_path.is_file():
|
76 |
+
raise FileNotFoundError(f"Model not found: {model_path}")
|
77 |
+
|
78 |
+
model = rt.InferenceSession(
|
79 |
+
str(model_path),
|
80 |
+
providers=[("CUDAExecutionProvider", {}), "CPUExecutionProvider"],
|
81 |
+
)
|
82 |
+
return model
|
83 |
+
|
84 |
+
|
85 |
+
## Label loading function
|
86 |
+
def load_labels_hf(
|
87 |
+
repo_id: str,
|
88 |
+
revision: Optional[str] = None,
|
89 |
+
token: Optional[str] = None,
|
90 |
+
) -> LabelData:
|
91 |
+
try:
|
92 |
+
csv_path = hf_hub_download(
|
93 |
+
repo_id=repo_id, filename="selected_tags.csv", revision=revision, token=token
|
94 |
+
)
|
95 |
+
csv_path = Path(csv_path).resolve()
|
96 |
+
except HfHubHTTPError as e:
|
97 |
+
raise FileNotFoundError(f"selected_tags.csv failed to download from {repo_id}") from e
|
98 |
+
|
99 |
+
df: DataFrame = read_csv(csv_path, usecols=["name", "category"])
|
100 |
+
tag_data = LabelData(
|
101 |
+
names=df["name"].tolist(),
|
102 |
+
rating=list(np.where(df["category"] == 9)[0]),
|
103 |
+
general=list(np.where(df["category"] == 0)[0]),
|
104 |
+
character=list(np.where(df["category"] == 4)[0]),
|
105 |
+
)
|
106 |
+
|
107 |
+
return tag_data
|
108 |
+
|
109 |
+
|
110 |
+
## Image preprocessing functions
|
111 |
+
def pil_ensure_rgb(image: Image.Image) -> Image.Image:
|
112 |
+
# convert to RGB/RGBA if not already (deals with palette images etc.)
|
113 |
+
if image.mode not in ["RGB", "RGBA"]:
|
114 |
+
image = image.convert("RGBA") if "transparency" in image.info else image.convert("RGB")
|
115 |
+
# convert RGBA to RGB with white background
|
116 |
+
if image.mode == "RGBA":
|
117 |
+
canvas = Image.new("RGBA", image.size, (255, 255, 255))
|
118 |
+
canvas.alpha_composite(image)
|
119 |
+
image = canvas.convert("RGB")
|
120 |
+
return image
|
121 |
+
|
122 |
+
|
123 |
+
def pil_pad_square(
|
124 |
+
image: Image.Image,
|
125 |
+
fill: tuple[int, int, int] = (255, 255, 255),
|
126 |
+
) -> Image.Image:
|
127 |
+
w, h = image.size
|
128 |
+
# get the largest dimension so we can pad to a square
|
129 |
+
px = max(image.size)
|
130 |
+
# pad to square with white background
|
131 |
+
canvas = Image.new("RGB", (px, px), fill)
|
132 |
+
canvas.paste(image, ((px - w) // 2, (px - h) // 2))
|
133 |
+
return canvas
|
134 |
+
|
135 |
+
|
136 |
+
def preprocess_image(
|
137 |
+
image: Image.Image,
|
138 |
+
size_px: int | tuple[int, int],
|
139 |
+
upscale: bool = True,
|
140 |
+
) -> Image.Image:
|
141 |
+
"""
|
142 |
+
Preprocess an image to be square and centered on a white background.
|
143 |
+
"""
|
144 |
+
if isinstance(size_px, int):
|
145 |
+
size_px = (size_px, size_px)
|
146 |
+
|
147 |
+
# ensure RGB and pad to square
|
148 |
+
image = pil_ensure_rgb(image)
|
149 |
+
image = pil_pad_square(image)
|
150 |
+
|
151 |
+
# resize to target size
|
152 |
+
if image.size[0] < size_px[0] or image.size[1] < size_px[1]:
|
153 |
+
if upscale is False:
|
154 |
+
raise ValueError("Image is smaller than target size, and upscaling is disabled")
|
155 |
+
image = image.resize(size_px, Image.LANCZOS)
|
156 |
+
if image.size[0] > size_px[0] or image.size[1] > size_px[1]:
|
157 |
+
image.thumbnail(size_px, Image.BICUBIC)
|
158 |
+
|
159 |
+
return image
|
160 |
+
|
161 |
+
|
162 |
+
## Dataset for DataLoader
|
163 |
+
class ImageDataset(Dataset):
|
164 |
+
def __init__(self, image_paths: list[Path], size_px: int = IMAGE_SIZE, upscale: bool = True):
|
165 |
+
self.size_px = size_px
|
166 |
+
self.upscale = upscale
|
167 |
+
self.images = [p for p in image_paths if p.suffix.lower() in IMAGE_EXTENSIONS]
|
168 |
+
|
169 |
+
def __len__(self):
|
170 |
+
return len(self.images)
|
171 |
+
|
172 |
+
def __getitem__(self, idx):
|
173 |
+
image_path: Path = self.images[idx]
|
174 |
+
try:
|
175 |
+
image = Image.open(image_path)
|
176 |
+
image = preprocess_image(image, self.size_px, self.upscale)
|
177 |
+
# turn into BGR24 numpy array of N,H,W,C since thats what these want
|
178 |
+
image = image.convert("RGB").convert("BGR;24")
|
179 |
+
image = np.array(image).astype(np.float32)
|
180 |
+
except Exception as e:
|
181 |
+
logging.exception(f"Could not load image from {image_path}, error: {e}")
|
182 |
+
return None
|
183 |
+
|
184 |
+
return {"image": image, "path": np.array(str(image_path).encode("utf-8"), dtype=np.bytes_)}
|
185 |
+
|
186 |
+
|
187 |
+
def collate_fn_remove_corrupted(batch):
|
188 |
+
"""Collate function that allows to remove corrupted examples in the
|
189 |
+
dataloader. It expects that the dataloader returns 'None' when that occurs.
|
190 |
+
The 'None's in the batch are removed.
|
191 |
+
"""
|
192 |
+
# Filter out all the Nones (corrupted examples)
|
193 |
+
batch = [x for x in batch if x is not None]
|
194 |
+
if len(batch) == 0:
|
195 |
+
return None
|
196 |
+
return {k: np.array([x[k] for x in batch if x is not None]) for k in batch[0]}
|
197 |
+
|
198 |
+
|
199 |
+
## Main function
|
200 |
+
class ImageLabeler:
|
201 |
+
def __init__(
|
202 |
+
self,
|
203 |
+
repo_id: Optional[PathLike] = None,
|
204 |
+
general_threshold: float = 0.35,
|
205 |
+
character_threshold: float = 0.35,
|
206 |
+
banned_tags: list[str] = [],
|
207 |
+
):
|
208 |
+
self.repo_id = repo_id
|
209 |
+
|
210 |
+
# create some object attributes for convenience
|
211 |
+
self.general_threshold = general_threshold
|
212 |
+
self.character_threshold = character_threshold
|
213 |
+
self.banned_tags = banned_tags if banned_tags is not None else []
|
214 |
+
|
215 |
+
# actually load the model
|
216 |
+
logging.info(f"Loading model from path: {self.repo_id}")
|
217 |
+
self.model = create_session(self.repo_id)
|
218 |
+
|
219 |
+
# Get input dimensions
|
220 |
+
_, self.height, self.width, _ = self.model.get_inputs()[0].shape
|
221 |
+
logging.info(f"Model loaded, input dimensions {self.height}x{self.width}")
|
222 |
+
|
223 |
+
# load labels
|
224 |
+
self.labels = load_labels_hf(self.repo_id)
|
225 |
+
self.labels.general = [i for i in self.labels.general if i not in banned_tags]
|
226 |
+
self.labels.character = [i for i in self.labels.character if i not in banned_tags]
|
227 |
+
logging.info(f"Loaded labels from {self.repo_id}")
|
228 |
+
|
229 |
+
@property
|
230 |
+
def input_size(self) -> Tuple[int, int]:
|
231 |
+
return (self.height, self.width)
|
232 |
+
|
233 |
+
@property
|
234 |
+
def input_name(self) -> str:
|
235 |
+
return self.model.get_inputs()[0].name if self.model is not None else None
|
236 |
+
|
237 |
+
@property
|
238 |
+
def output_name(self) -> str:
|
239 |
+
return self.model.get_outputs()[0].name if self.model is not None else None
|
240 |
+
|
241 |
+
def label_images(self, images: np.ndarray) -> ImageLabels:
|
242 |
+
# Run the ONNX model
|
243 |
+
probs: np.ndarray = self.model.run([self.output_name], {self.input_name: images})[0]
|
244 |
+
|
245 |
+
# Convert to labels
|
246 |
+
results = []
|
247 |
+
for sample in list(probs):
|
248 |
+
labels = list(zip(self.labels.names, sample.astype(float)))
|
249 |
+
|
250 |
+
# First 4 labels are actually ratings: pick one with argmax
|
251 |
+
rating_labels = dict([labels[i] for i in self.labels.rating])
|
252 |
+
rating = max(rating_labels, key=rating_labels.get)
|
253 |
+
|
254 |
+
# General labels, pick any where prediction confidence > threshold
|
255 |
+
gen_labels = [labels[i] for i in self.labels.general]
|
256 |
+
gen_labels = dict([x for x in gen_labels if x[1] > self.general_threshold])
|
257 |
+
gen_labels = dict(sorted(gen_labels.items(), key=lambda item: item[1], reverse=True))
|
258 |
+
|
259 |
+
# Character labels, pick any where prediction confidence > threshold
|
260 |
+
char_labels = [labels[i] for i in self.labels.character]
|
261 |
+
char_labels = dict([x for x in char_labels if x[1] > self.character_threshold])
|
262 |
+
char_labels = dict(sorted(char_labels.items(), key=lambda item: item[1], reverse=True))
|
263 |
+
|
264 |
+
# Combine general and character labels, sort by confidence
|
265 |
+
combined_names = [x for x in gen_labels]
|
266 |
+
combined_names.extend([x for x in char_labels])
|
267 |
+
|
268 |
+
# Convert to a string suitable for use as a training caption
|
269 |
+
caption = ", ".join(combined_names)
|
270 |
+
booru = caption.replace("_", " ").replace("(", "\(").replace(")", "\)")
|
271 |
+
|
272 |
+
# return output
|
273 |
+
results.append(
|
274 |
+
ImageLabels(
|
275 |
+
caption=caption,
|
276 |
+
booru=booru,
|
277 |
+
rating=rating,
|
278 |
+
general=gen_labels,
|
279 |
+
character=char_labels,
|
280 |
+
ratings=rating_labels,
|
281 |
+
)
|
282 |
+
)
|
283 |
+
|
284 |
+
return results
|
285 |
+
|
286 |
+
def __call__(self, images: list[Image.Image]) -> Generator[ImageLabels, None, None]:
|
287 |
+
for x in images:
|
288 |
+
yield self.label_images(x)
|
289 |
+
|
290 |
+
|
291 |
+
def main(args):
|
292 |
+
images_dir: Path = Path(args.images_dir).resolve()
|
293 |
+
if not images_dir.is_dir():
|
294 |
+
raise FileNotFoundError(f"Directory not found: {images_dir}")
|
295 |
+
|
296 |
+
variant: str = args.variant
|
297 |
+
recursive: bool = args.recursive or False
|
298 |
+
banned_tags: set[str] = set(args.banned_tags.split(","))
|
299 |
+
caption_extension: str = str(args.caption_extension).lower()
|
300 |
+
print_freqs: bool = args.print_freqs or False
|
301 |
+
num_workers: int = args.num_workers
|
302 |
+
batch_size: int = args.batch_size
|
303 |
+
|
304 |
+
remove_underscore: bool = args.remove_underscore or False
|
305 |
+
general_threshold: float = args.general_threshold or args.thresh
|
306 |
+
character_threshold: float = args.character_threshold or args.thresh
|
307 |
+
debug: bool = args.debug or False
|
308 |
+
|
309 |
+
# turn base model into a repo id and model path
|
310 |
+
repo_id: str = MODEL_VARIANTS.get(variant, None)
|
311 |
+
if repo_id is None:
|
312 |
+
raise ValueError(f"Unknown base model '{variant}'")
|
313 |
+
|
314 |
+
# instantiate the dataset
|
315 |
+
print(f"Loading images from {images_dir}...", end=" ")
|
316 |
+
if recursive is True:
|
317 |
+
image_paths = [p for p in images_dir.rglob("**/*") if p.suffix.lower() in IMAGE_EXTENSIONS]
|
318 |
+
else:
|
319 |
+
image_paths = [p for p in images_dir.glob("*") if p.suffix.lower() in IMAGE_EXTENSIONS]
|
320 |
+
|
321 |
+
n_images = len(image_paths)
|
322 |
+
print(f"found {n_images} images to process, creating DataLoader...")
|
323 |
+
# sort by filename if we have a small number of images
|
324 |
+
if n_images < 10000:
|
325 |
+
image_paths = sorted(image_paths, key=lambda x: x.stem)
|
326 |
+
dataset = ImageDataset(image_paths)
|
327 |
+
|
328 |
+
# Create the data loader
|
329 |
+
dataloader = DataLoader(
|
330 |
+
dataset,
|
331 |
+
batch_size=batch_size,
|
332 |
+
shuffle=False,
|
333 |
+
num_workers=num_workers,
|
334 |
+
collate_fn=collate_fn_remove_corrupted,
|
335 |
+
drop_last=False,
|
336 |
+
prefetch_factor=3,
|
337 |
+
)
|
338 |
+
|
339 |
+
# Create the image labeler
|
340 |
+
labeler: ImageLabeler = ImageLabeler(
|
341 |
+
repo_id=repo_id,
|
342 |
+
character_threshold=character_threshold,
|
343 |
+
general_threshold=general_threshold,
|
344 |
+
banned_tags=banned_tags,
|
345 |
+
)
|
346 |
+
|
347 |
+
# object to save tag frequencies
|
348 |
+
tag_freqs = {}
|
349 |
+
|
350 |
+
# iterate
|
351 |
+
for batch in tqdm(dataloader, ncols=100, unit="image", unit_scale=batch_size):
|
352 |
+
images = batch["image"]
|
353 |
+
paths = batch["path"]
|
354 |
+
|
355 |
+
# label the images
|
356 |
+
batch_labels = labeler.label_images(images)
|
357 |
+
|
358 |
+
# save the labels
|
359 |
+
for image_labels, image_path in zip(batch_labels, paths):
|
360 |
+
if isinstance(image_path, (np.bytes_, bytes)):
|
361 |
+
image_path = Path(image_path.decode("utf-8"))
|
362 |
+
|
363 |
+
# save the labels
|
364 |
+
caption = image_labels.caption
|
365 |
+
if remove_underscore is True:
|
366 |
+
caption = caption.replace("_", " ")
|
367 |
+
Path(image_path).with_suffix(caption_extension).write_text(caption + "\n", encoding="utf-8")
|
368 |
+
|
369 |
+
# save the tag frequencies
|
370 |
+
if print_freqs is True:
|
371 |
+
for tag in caption.split(", "):
|
372 |
+
if tag in banned_tags:
|
373 |
+
continue
|
374 |
+
if tag not in tag_freqs:
|
375 |
+
tag_freqs[tag] = 0
|
376 |
+
tag_freqs[tag] += 1
|
377 |
+
|
378 |
+
# debug
|
379 |
+
if debug is True:
|
380 |
+
print(
|
381 |
+
f"{image_path}:"
|
382 |
+
+ f"\n Character tags: {image_labels.character}"
|
383 |
+
+ f"\n General tags: {image_labels.general}"
|
384 |
+
)
|
385 |
+
|
386 |
+
if print_freqs:
|
387 |
+
sorted_tags = sorted(tag_freqs.items(), key=lambda x: x[1], reverse=True)
|
388 |
+
print("\nTag frequencies:")
|
389 |
+
for tag, freq in sorted_tags:
|
390 |
+
print(f"{tag}: {freq}")
|
391 |
+
|
392 |
+
print("done!")
|
393 |
+
|
394 |
+
|
395 |
+
if __name__ == "__main__":
|
396 |
+
parser = argparse.ArgumentParser()
|
397 |
+
parser.add_argument(
|
398 |
+
"images_dir",
|
399 |
+
type=str,
|
400 |
+
help="directory to tag image files in",
|
401 |
+
)
|
402 |
+
parser.add_argument(
|
403 |
+
"--variant",
|
404 |
+
type=str,
|
405 |
+
default="swinv2",
|
406 |
+
help="name of base model to use (one of 'swinv2', 'convnext', 'vit')",
|
407 |
+
)
|
408 |
+
parser.add_argument(
|
409 |
+
"--num_workers",
|
410 |
+
type=int,
|
411 |
+
default=4,
|
412 |
+
help="number of threads to use in Torch DataLoader (4 should be plenty)",
|
413 |
+
)
|
414 |
+
parser.add_argument(
|
415 |
+
"--batch_size",
|
416 |
+
type=int,
|
417 |
+
default=1,
|
418 |
+
help="batch size for Torch DataLoader (use 1 for cpu, 4-32 for gpu)",
|
419 |
+
)
|
420 |
+
parser.add_argument(
|
421 |
+
"--caption_extension",
|
422 |
+
type=str,
|
423 |
+
default=".txt",
|
424 |
+
help="extension of caption files to write (e.g. '.txt', '.caption')",
|
425 |
+
)
|
426 |
+
parser.add_argument(
|
427 |
+
"--thresh",
|
428 |
+
type=float,
|
429 |
+
default=0.35,
|
430 |
+
help="confidence threshold for adding tags",
|
431 |
+
)
|
432 |
+
parser.add_argument(
|
433 |
+
"--general_threshold",
|
434 |
+
type=float,
|
435 |
+
default=None,
|
436 |
+
help="confidence threshold for general tags - defaults to --thresh",
|
437 |
+
)
|
438 |
+
parser.add_argument(
|
439 |
+
"--character_threshold",
|
440 |
+
type=float,
|
441 |
+
default=None,
|
442 |
+
help="confidence threshold for character tags - defaults to --thresh",
|
443 |
+
)
|
444 |
+
parser.add_argument(
|
445 |
+
"--recursive",
|
446 |
+
action="store_true",
|
447 |
+
help="whether to recurse into subdirectories of images_dir",
|
448 |
+
)
|
449 |
+
parser.add_argument(
|
450 |
+
"--remove_underscore",
|
451 |
+
action="store_true",
|
452 |
+
help="whether to remove underscores from tags (e.g. 'long_hair' -> 'long hair')",
|
453 |
+
)
|
454 |
+
parser.add_argument(
|
455 |
+
"--debug",
|
456 |
+
action="store_true",
|
457 |
+
help="enable debug logging mode",
|
458 |
+
)
|
459 |
+
parser.add_argument(
|
460 |
+
"--banned_tags",
|
461 |
+
type=str,
|
462 |
+
default="",
|
463 |
+
help="tags to filter out (comma-separated)",
|
464 |
+
)
|
465 |
+
parser.add_argument(
|
466 |
+
"--print_freqs",
|
467 |
+
action="store_true",
|
468 |
+
help="Print overall tag frequencies at the end",
|
469 |
+
)
|
470 |
+
|
471 |
+
args = parser.parse_args()
|
472 |
+
if args.images_dir is None:
|
473 |
+
args.images_dir = Path.cwd().joinpath("temp/test")
|
474 |
+
|
475 |
+
main(args)
|