Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
3 |
+
from qwen_vl_utils import process_vision_info
|
4 |
+
import torch
|
5 |
+
import pandas as pd
|
6 |
+
from datetime import datetime
|
7 |
+
from azure.storage.blob import BlobServiceClient
|
8 |
+
from io import BytesIO
|
9 |
+
import re
|
10 |
+
|
11 |
+
# Azure Storage Account details
|
12 |
+
STORAGE_ACCOUNT_NAME = "piointernaldestrg"
|
13 |
+
STORAGE_ACCOUNT_KEY = "Pd91QXwgXkiRyd4njM06B9rRFSvtMBijk99N9s7n1M405Kmn4vWzMUmm0vstoYtLLepFmKb9iBaJ+ASt6q+jwg=="
|
14 |
+
CONTAINER_NAME = "invoices"
|
15 |
+
|
16 |
+
# Initialize model and processor
|
17 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct-AWQ", torch_dtype="auto")
|
18 |
+
if torch.cuda.is_available():
|
19 |
+
model.to("cuda")
|
20 |
+
|
21 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct-AWQ")
|
22 |
+
|
23 |
+
# Function to process a batch of images
|
24 |
+
def process_image_batch(model, processor, image_paths):
|
25 |
+
results = []
|
26 |
+
for image_path in image_paths:
|
27 |
+
try:
|
28 |
+
prompt = (
|
29 |
+
"Please extract the following details from the invoice:\n"
|
30 |
+
"- 'invoice_number'\n"
|
31 |
+
"- 'date'\n"
|
32 |
+
"- 'place of invoice (city)'\n"
|
33 |
+
"- 'total amount'\n"
|
34 |
+
"- 'category of invoice (like food, stay, travel, other)'"
|
35 |
+
)
|
36 |
+
|
37 |
+
messages = [
|
38 |
+
{
|
39 |
+
"role": "user",
|
40 |
+
"content": [
|
41 |
+
{"type": "image", "image": image_path},
|
42 |
+
{"type": "text", "text": prompt},
|
43 |
+
],
|
44 |
+
}
|
45 |
+
]
|
46 |
+
|
47 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
48 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
49 |
+
inputs = processor(
|
50 |
+
text=[text],
|
51 |
+
images=image_inputs,
|
52 |
+
videos=video_inputs,
|
53 |
+
padding=True,
|
54 |
+
return_tensors="pt",
|
55 |
+
)
|
56 |
+
inputs = inputs.to(model.device)
|
57 |
+
|
58 |
+
generated_ids = model.generate(**inputs, max_new_tokens=128)
|
59 |
+
generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
|
60 |
+
output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
61 |
+
|
62 |
+
structured_data = {
|
63 |
+
"invoice_number": None,
|
64 |
+
"date": None,
|
65 |
+
"place_of_invoice": None,
|
66 |
+
"total_amount": None,
|
67 |
+
"category_of_invoice": None,
|
68 |
+
}
|
69 |
+
|
70 |
+
total_amount_found = False
|
71 |
+
|
72 |
+
for line in output_text[0].split("\n"):
|
73 |
+
# Invoice number mapping logic
|
74 |
+
if any(keyword in line.lower() for keyword in ["invoice_number", "number in bold", "number", "bill number", "estimate number"]):
|
75 |
+
structured_data["invoice_number"] = line.split(":")[-1].strip()
|
76 |
+
|
77 |
+
# Date mapping logic
|
78 |
+
elif "date" in line.lower():
|
79 |
+
date = line.split(":")[-1].strip()
|
80 |
+
structured_data["date"] = process_date(date)
|
81 |
+
|
82 |
+
# Place of invoice mapping logic
|
83 |
+
elif "place of invoice" in line.lower():
|
84 |
+
structured_data["place_of_invoice"] = line.split(":")[-1].strip()
|
85 |
+
|
86 |
+
# Total amount mapping logic
|
87 |
+
elif any(keyword in line.lower() for keyword in ["total", "total amount", "grand total", "final amount", "balance due"]):
|
88 |
+
amounts = re.findall(r"\d+\.\d{2}", line)
|
89 |
+
if amounts:
|
90 |
+
structured_data["total_amount"] = amounts[-1]
|
91 |
+
total_amount_found = True
|
92 |
+
elif not total_amount_found and re.match(r"^\s*TOTAL\s*:\s*\d+\.\d{2}\s*$", line, re.IGNORECASE):
|
93 |
+
structured_data["total_amount"] = re.findall(r"\d+\.\d{2}", line)[0]
|
94 |
+
total_amount_found = True
|
95 |
+
|
96 |
+
# Category of invoice mapping logic
|
97 |
+
elif "category of invoice" in line.lower():
|
98 |
+
structured_data["category_of_invoice"] = line.split(":")[-1].strip()
|
99 |
+
|
100 |
+
results.append(structured_data)
|
101 |
+
except Exception as e:
|
102 |
+
results.append({
|
103 |
+
"invoice_number": "Error",
|
104 |
+
"date": "Error",
|
105 |
+
"place_of_invoice": "Error",
|
106 |
+
"total_amount": "Error",
|
107 |
+
"category_of_invoice": str(e),
|
108 |
+
})
|
109 |
+
|
110 |
+
return pd.DataFrame(results)
|
111 |
+
|
112 |
+
# Function to process and format dates
|
113 |
+
def process_date(date_str):
|
114 |
+
try:
|
115 |
+
if re.match(r"\d{2}/\d{2}/\d{4}", date_str):
|
116 |
+
return date_str
|
117 |
+
elif re.match(r"\d{2} \w+ \d{4}", date_str):
|
118 |
+
date_obj = datetime.strptime(date_str, "%d %b %Y")
|
119 |
+
return date_obj.strftime("%d/%m/%Y")
|
120 |
+
elif re.match(r"\d{2} \w+", date_str):
|
121 |
+
date_obj = datetime.strptime(date_str, "%d %b")
|
122 |
+
return date_obj.strftime("%d/%m") + "/YYYY"
|
123 |
+
else:
|
124 |
+
return date_str
|
125 |
+
except:
|
126 |
+
return date_str
|
127 |
+
|
128 |
+
# Upload extracted data to Azure Blob Storage as a Parquet file
|
129 |
+
def upload_to_azure_blob(df):
|
130 |
+
try:
|
131 |
+
# Convert DataFrame to Parquet format
|
132 |
+
parquet_buffer = BytesIO()
|
133 |
+
df.to_parquet(parquet_buffer, index=False)
|
134 |
+
|
135 |
+
# Create the BlobServiceClient object
|
136 |
+
blob_service_client = BlobServiceClient(
|
137 |
+
account_url=f"https://{STORAGE_ACCOUNT_NAME}.blob.core.windows.net",
|
138 |
+
credential=STORAGE_ACCOUNT_KEY,
|
139 |
+
)
|
140 |
+
|
141 |
+
# Get the BlobClient object
|
142 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
143 |
+
blob_client = blob_service_client.get_blob_client(container=CONTAINER_NAME, blob=f"invoice_data_{timestamp}.parquet")
|
144 |
+
|
145 |
+
# Upload the Parquet file
|
146 |
+
blob_client.upload_blob(parquet_buffer.getvalue(), overwrite=True)
|
147 |
+
|
148 |
+
# Return the file URL
|
149 |
+
return f"https://{STORAGE_ACCOUNT_NAME}.blob.core.windows.net/{CONTAINER_NAME}/invoice_data_{timestamp}.parquet"
|
150 |
+
except Exception as e:
|
151 |
+
return {"error": str(e)}
|
152 |
+
|
153 |
+
# Gradio interface function
|
154 |
+
def gradio_interface(username, email, image_files):
|
155 |
+
df = process_image_batch(model, processor, image_files)
|
156 |
+
file_url = upload_to_azure_blob(df)
|
157 |
+
user_info = f"Username: {username}\nEmail: {email}"
|
158 |
+
return user_info, df, f"Parquet File URL: {file_url}"
|
159 |
+
|
160 |
+
# Define the Gradio interface
|
161 |
+
grpc_interface = gr.Interface(
|
162 |
+
fn=gradio_interface,
|
163 |
+
inputs=[
|
164 |
+
gr.Textbox(label="Username"),
|
165 |
+
gr.Textbox(label="Email"),
|
166 |
+
gr.Files(label="Upload Invoice Images", type="filepath"),
|
167 |
+
],
|
168 |
+
outputs=[
|
169 |
+
gr.Textbox(label="User Info"),
|
170 |
+
gr.Dataframe(label="Extracted Invoice Data"),
|
171 |
+
gr.Textbox(label="Parquet File URL"),
|
172 |
+
],
|
173 |
+
title="Invoice Extraction System",
|
174 |
+
description="Upload invoices, extract details, and save to Azure Blob Storage.",
|
175 |
+
)
|
176 |
+
|
177 |
+
# Launch the Gradio interface
|
178 |
+
if __name__ == "__main__":
|
179 |
+
grpc_interface.launch(share=True)
|