Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
from serpapi import GoogleSearch | |
# SERP API key (replace with your actual key) | |
SERP_API_KEY = "785988650046bf6eddbc597cbf87330e2d53f8a3bacb4bac62a90ab1ecfa2445" | |
def search_and_answer(question): | |
try: | |
# Step 1: Fetch search results from Google using SERP API | |
search_params = { | |
"q": question, | |
"hl": "en", | |
"gl": "us", | |
"api_key": SERP_API_KEY | |
} | |
search = GoogleSearch(search_params) | |
results = search.get_dict() | |
# Extract top 3 organic search results | |
extracted_results = [] | |
for result in results.get("organic_results", [])[:3]: | |
extracted_results.append({ | |
"title": result.get("title"), | |
"link": result.get("link"), | |
"snippet": result.get("snippet", "No description available.") | |
}) | |
if not extracted_results: | |
return pd.DataFrame(columns=["Answer", "Source", "Confidence Score"]) | |
# Step 2: Prepare final dataframe with sources and confidence scores | |
data = [] | |
for i, res in enumerate(extracted_results): | |
confidence_score = round(1 - (i * 0.2), 2) # Simulated confidence score | |
data.append({ | |
"Answer": res["snippet"], | |
"Source": res["link"], | |
"Confidence Score": confidence_score | |
}) | |
df = pd.DataFrame(data) | |
return df | |
except Exception as e: | |
return pd.DataFrame({"Error": [str(e)]}) | |
# Step 3: Create Gradio Interface | |
iface = gr.Interface( | |
fn=search_and_answer, | |
inputs=gr.Textbox(label="Ask a Question"), | |
outputs=gr.Dataframe(headers=["Answer", "Source", "Confidence Score"]), | |
title="AI-Powered Q&A System ", | |
description="Enter a question and get top 3 answers from web search with confidence scores." | |
) | |
# Launch the Gradio app with debug enabled | |
iface.launch(share=True, debug=True) | |