import gradio as gr import torch import whisper from moviepy.editor import ( AudioFileClip, ColorClip, CompositeVideoClip, VideoFileClip, concatenate_videoclips, ) from moviepy.video.VideoClip import TextClip def generate_srt_file(transcription_result, srt_file_path, lag=0): with open(srt_file_path, "w") as file: for i, segment in enumerate(transcription_result["segments"], start=1): # Adjusting times for lag start_time = segment["start"] + lag end_time = segment["end"] + lag text = segment["text"] # Convert times to SRT format (HH:MM:SS,MS) start_srt = f"{int(start_time // 3600):02d}:{int((start_time % 3600) // 60):02d}:{int(start_time % 60):02d},{int((start_time % 1) * 1000):03d}" end_srt = f"{int(end_time // 3600):02d}:{int((end_time % 3600) // 60):02d}:{int(end_time % 60):02d},{int((end_time % 1) * 1000):03d}" file.write(f"{i}\n{start_srt} --> {end_srt}\n{text}\n\n") def generate_video( audio_path, video_path, input, language, lag, progress=gr.Progress(track_tqdm=True) ): if audio_path is None and video_path is None: raise ValueError("Please upload an audio or video file.") if input == "Video" and video_path is None: raise ValueError("Please upload a video file.") if input == "Audio" and audio_path is None: raise ValueError("Please upload an audio file.") progress(0.0, "Checking input...") if input == "Video": progress(0.0, "Extracting audio from video...") audio_path = "./temp_audio.wav" video = VideoFileClip(video_path) video.audio.write_audiofile(audio_path) video.close() progress(0.1, "Audio extracted!") # Transcribe audio progress(0.1, "Transcribing audio...") result = model.transcribe(audio_path, language=language) progress(0.30, "Audio transcribed!") # Generate SRT file progress(0.30, "Generating SRT file...") srt_file_path = "./temp.srt" generate_srt_file(result, srt_file_path, lag=lag) progress(0.40, "SRT file generated!") if input == "Video": # if lag is 0, we can use the original video, else we need to create a new video if lag == 0: return video_path, srt_file_path else: # we simply extend the original video with a black screen at the end of duration lag video = VideoFileClip(video_path) fps = video.fps black_screen = ColorClip( size=video.size, color=(0, 0, 0), duration=lag ).set_fps(1) final_video = concatenate_videoclips([video, black_screen]) output_video_path = "./transcribed_video.mp4" final_video.write_videofile( output_video_path, codec="libx264", audio_codec="aac" ) return output_video_path, srt_file_path else: output_video_path = "./transcribed_video.mp4" audio_clip = AudioFileClip(audio_path) duration = audio_clip.duration + lag video_clip = ColorClip( size=(1280, 720), color=(0, 0, 0), duration=duration ).set_fps( 1 ) # Low fps video_clip = video_clip.set_audio(audio_clip) video_clip.write_videofile( output_video_path, codec="libx264", audio_codec="aac" ) return output_video_path, srt_file_path if __name__ == "__main__": DEVICE = "cuda" if torch.cuda.is_available() else "cpu" model = whisper.load_model("base", device=DEVICE) # Gradio interface iface = gr.Interface( fn=generate_video, inputs=[ gr.Audio( sources=["upload", "microphone"], type="filepath", label="Audio File", ), gr.Video(label="Or Video File", sources=["upload", "webcam"]), gr.Dropdown(["Video", "Audio"], label="File Type", value="Audio"), gr.Dropdown( ["en", "es", "fr", "de", "it", "nl", "ru", "no", "zh"], label="Language", value="en", ), gr.Slider( minimum=0, maximum=10, step=1, value=0, label="Lag (seconds): delay the transcription by this amount of time.", ), ], outputs=gr.Video(label="Play Video", show_download_button=True), title="Audio Transcription Video Generator", description="Upload your audio file and select the language for transcription.", ) iface.launch()