lterriel commited on
Commit
8da674b
Β·
1 Parent(s): f832cf5

add new titles

Browse files
Files changed (2) hide show
  1. .gitignore +2 -0
  2. app.py +16 -10
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ venv/
2
+ .idea/
app.py CHANGED
@@ -4,7 +4,7 @@
4
 
5
 
6
  import streamlit as st
7
-
8
  from n4a_analytics_lib.analytics import (GlobalStatistics, IaaStatistics)
9
 
10
 
@@ -105,18 +105,19 @@ if option == "Inter-Annotator Agreement results":
105
  #tab1, tab2, tab3, tab4, tab5 = st.tabs(
106
  # ["πŸ“ˆ IAA metrics", "πŸ—ƒ IAA Metrics Legend", "βœ”οΈ Agree annotations", "❌ Disagree annotations",
107
  # "🏷️ Global Labels Statistics"])
108
- st.subheader("Fleiss Kappa (global score for group):")
109
-
 
110
 
111
 
112
- st.markdown(interpret_kappa(round(fleiss_kappa_function(matrix), 2)), unsafe_allow_html=True)
113
- st.subheader("Cohen Kappa Annotators Matrix (score between annotators):")
114
  # tab1.dataframe(df)
115
  data = []
116
  for coder_1, coder_2 in pairs:
117
  cohen_function = cohen_kappa_function(project_analyzed.labels_per_coder[coder_1], project_analyzed.labels_per_coder[coder_2])
118
  data.append(((coder_1, coder_2), cohen_function))
119
- st.markdown(f"* {coder_1} <> {coder_2} : {interpret_kappa(cohen_function)}", unsafe_allow_html=True)
120
  # print(f"* {coder_1} <> {coder_2} : {cohen_function}")
121
 
122
  intermediary = defaultdict(Counter)
@@ -138,7 +139,10 @@ if option == "Inter-Annotator Agreement results":
138
  sn.heatmap(df_cm, cmap=colors, annot=True, mask=mask, annot_kws={"size": 7}, vmin=0, vmax=1, ax=ax) # font size
139
  # plt.show()
140
  st.pyplot(ax.figure)
141
- st.markdown("""
 
 
 
142
  <table>
143
  <thead>
144
  <tr>
@@ -193,10 +197,11 @@ if option == "Inter-Annotator Agreement results":
193
  agreement </td>
194
  </tr>
195
  </tbody>
196
- </table>"""
197
 
198
  , unsafe_allow_html = True)
199
 
 
200
  ## commune
201
  @st.cache
202
  def convert_df(df_ex):
@@ -217,7 +222,7 @@ if option == "Inter-Annotator Agreement results":
217
 
218
  csv_agree = convert_df(df_agree)
219
 
220
- st.subheader("Total agree annotations:")
221
  st.markdown(f"{total_unanime} / {len(df)} annotations ({round((total_unanime / len(df)) * 100, 2)} %)")
222
  st.download_button(
223
  "Press to Download CSV",
@@ -238,7 +243,7 @@ if option == "Inter-Annotator Agreement results":
238
  df_disagree = df[df[columns_to_compare].apply(lambda row: check_all_not_equal(row), axis=1)]
239
  total_desaccord = len(df_disagree)
240
  csv_disagree = convert_df(df_disagree)
241
- st.subheader("Total disagree annotations:")
242
  st.markdown(
243
  f"{total_desaccord} / {len(df)} annotations ({round((total_desaccord / len(df)) * 100, 2)} %)")
244
  st.download_button(
@@ -299,6 +304,7 @@ if option == "Inter-Annotator Agreement results":
299
  return fig
300
 
301
  f = plot_pies(to_pie)
 
302
  st.pyplot(f.figure)
303
 
304
  # global project results view
 
4
 
5
 
6
  import streamlit as st
7
+ from streamlit.components.v1 import html
8
  from n4a_analytics_lib.analytics import (GlobalStatistics, IaaStatistics)
9
 
10
 
 
105
  #tab1, tab2, tab3, tab4, tab5 = st.tabs(
106
  # ["πŸ“ˆ IAA metrics", "πŸ—ƒ IAA Metrics Legend", "βœ”οΈ Agree annotations", "❌ Disagree annotations",
107
  # "🏷️ Global Labels Statistics"])
108
+ st.markdown("## πŸ“ˆ IAA metrics")
109
+ col1_kappa, col2_kappa = st.columns(2)
110
+ col1_kappa.subheader("Fleiss Kappa (global score for group):")
111
 
112
 
113
+ col1_kappa.markdown(interpret_kappa(round(fleiss_kappa_function(matrix), 2)), unsafe_allow_html=True)
114
+ col1_kappa.subheader("Cohen Kappa Annotators Matrix (score between annotators):")
115
  # tab1.dataframe(df)
116
  data = []
117
  for coder_1, coder_2 in pairs:
118
  cohen_function = cohen_kappa_function(project_analyzed.labels_per_coder[coder_1], project_analyzed.labels_per_coder[coder_2])
119
  data.append(((coder_1, coder_2), cohen_function))
120
+ col1_kappa.markdown(f"* {coder_1} <> {coder_2} : {interpret_kappa(cohen_function)}", unsafe_allow_html=True)
121
  # print(f"* {coder_1} <> {coder_2} : {cohen_function}")
122
 
123
  intermediary = defaultdict(Counter)
 
139
  sn.heatmap(df_cm, cmap=colors, annot=True, mask=mask, annot_kws={"size": 7}, vmin=0, vmax=1, ax=ax) # font size
140
  # plt.show()
141
  st.pyplot(ax.figure)
142
+ col2_kappa.markdown("""
143
+ <div>
144
+ <div id="legend" style="right: 70em;">
145
+ <h3>πŸ—ƒ IAA Metrics Legend</h3>
146
  <table>
147
  <thead>
148
  <tr>
 
197
  agreement </td>
198
  </tr>
199
  </tbody>
200
+ </table></div></div>"""
201
 
202
  , unsafe_allow_html = True)
203
 
204
+
205
  ## commune
206
  @st.cache
207
  def convert_df(df_ex):
 
222
 
223
  csv_agree = convert_df(df_agree)
224
 
225
+ st.subheader("βœ”οΈ Agree annotations")
226
  st.markdown(f"{total_unanime} / {len(df)} annotations ({round((total_unanime / len(df)) * 100, 2)} %)")
227
  st.download_button(
228
  "Press to Download CSV",
 
243
  df_disagree = df[df[columns_to_compare].apply(lambda row: check_all_not_equal(row), axis=1)]
244
  total_desaccord = len(df_disagree)
245
  csv_disagree = convert_df(df_disagree)
246
+ st.subheader("❌ Disagree annotations")
247
  st.markdown(
248
  f"{total_desaccord} / {len(df)} annotations ({round((total_desaccord / len(df)) * 100, 2)} %)")
249
  st.download_button(
 
304
  return fig
305
 
306
  f = plot_pies(to_pie)
307
+ st.subheader("🏷️ Global Labels Statistics")
308
  st.pyplot(f.figure)
309
 
310
  # global project results view