test
Browse files- .gitattributes +3 -0
- app.py +63 -30
- requirements.txt +1 -0
- samples/FRAN_IR_050370.xml +0 -0
.gitattributes
CHANGED
@@ -29,3 +29,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
33 |
+
assets/*.png filter=lfs diff=lfs merge=lfs -text
|
34 |
+
assets filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
@@ -8,27 +8,50 @@ from spacy.tokens import Doc
|
|
8 |
|
9 |
streamlit.set_page_config(layout="wide")
|
10 |
|
11 |
-
|
12 |
|
13 |
# TITLE APP
|
14 |
streamlit.title("NER4Archives visualizer")
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
"Pass through the analyzer only small samples.")
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
# 1. User provides a XML EAD
|
22 |
-
streamlit.write("##
|
23 |
filename = streamlit.file_uploader("Load an XML EAD", type="xml")
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
27 |
flag_model = False
|
28 |
if filename is not None:
|
29 |
-
|
|
|
30 |
flag_file = True
|
31 |
-
|
|
|
32 |
|
33 |
|
34 |
import re
|
@@ -61,12 +84,10 @@ linking = True
|
|
61 |
flag_view = False
|
62 |
if flag_file:
|
63 |
col1, col2 = streamlit.columns(2)
|
64 |
-
col1.write("## XML tree view:")
|
65 |
-
col2.write("## Plain text view:")
|
66 |
parser = etree.XMLParser(ns_clean=True, recover=True, encoding='utf-8')
|
67 |
-
tree = etree.fromstring(
|
68 |
-
# representation cool:
|
69 |
-
#input_xml = col1.markdown(f'<pre>{etree.tostring(tree, pretty_print=True, encoding="utf-8").decode("utf-8")}</pre>', unsafe_allow_html=False)
|
70 |
xml = etree.tostring(tree, pretty_print=True, encoding="utf-8").decode("utf-8")
|
71 |
col1.text_area("", value=xml, height=500, disabled=True)
|
72 |
dids, sentences = ead_strategy(tree)
|
@@ -75,23 +96,22 @@ if flag_file:
|
|
75 |
flag_view = True
|
76 |
|
77 |
if flag_view:
|
78 |
-
streamlit.write("##
|
79 |
models = []
|
80 |
for pipe in spacy.info()["pipelines"]:
|
81 |
models.append(pipe)
|
82 |
option = streamlit.selectbox(
|
83 |
-
'Choose
|
84 |
models)
|
85 |
model = option
|
86 |
if model != "":
|
87 |
flag_model = True
|
88 |
-
linking = streamlit.checkbox('
|
89 |
linkingicon = "β
οΈ"
|
90 |
if linking is False:
|
91 |
linkingicon = "β"
|
92 |
streamlit.write("#### Actual Parameters:")
|
93 |
streamlit.write(f'- NER model selected: {option}\n - linking: {linkingicon}')
|
94 |
-
|
95 |
@Language.factory("custom_ner", default_config={
|
96 |
"model_name": "",
|
97 |
"sentences_to_process": []
|
@@ -104,6 +124,13 @@ class CustomNer:
|
|
104 |
sentences_to_process: list):
|
105 |
self.nlp = nlp
|
106 |
self.pipeline_ner = spacy.load(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
self.sentences = sentences_to_process
|
108 |
|
109 |
def __call__(self, doc: Doc):
|
@@ -132,14 +159,14 @@ entities = []
|
|
132 |
flag_vizualize = False
|
133 |
|
134 |
if flag_model:
|
135 |
-
if streamlit.button('Launch
|
136 |
with streamlit.spinner('Initialize NER...'):
|
137 |
huge_pipeline_linking = spacy.blank("fr")
|
138 |
huge_pipeline_linking.max_length = 5000000
|
139 |
huge_pipeline_linking.add_pipe('custom_ner', config={"model_name": model, "sentences_to_process": sentences})
|
140 |
if linking:
|
141 |
huge_pipeline_linking.add_pipe('entityfishing', config={"language": "fr"})
|
142 |
-
with streamlit.spinner('NER processing...'):
|
143 |
doc = huge_pipeline_linking(plain)
|
144 |
|
145 |
entities = [
|
@@ -147,23 +174,25 @@ if flag_model:
|
|
147 |
ent.end_char,
|
148 |
ent.text,
|
149 |
ent.label_,
|
150 |
-
ent._.url_wikidata
|
|
|
151 |
) for ent in doc.ents
|
152 |
]
|
153 |
-
streamlit.success('
|
154 |
|
155 |
|
156 |
df = pd.DataFrame(entities, columns=['START',
|
157 |
'END',
|
158 |
'MENTION',
|
159 |
'NER LABEL',
|
160 |
-
'WIKIDATA RESSOURCE (wikidata disambiguation)'
|
|
|
161 |
])
|
162 |
|
163 |
-
streamlit.write("##
|
164 |
streamlit.write(df)
|
165 |
|
166 |
-
streamlit.write("##
|
167 |
spacy_streamlit.visualize_ner(
|
168 |
[{"text": doc.text,
|
169 |
"ents": [
|
@@ -174,19 +203,23 @@ if flag_model:
|
|
174 |
"kb_url": ent._.url_wikidata
|
175 |
} for ent in doc.ents
|
176 |
]}],
|
177 |
-
labels=["EVENT", "LOCATION", "ORGANISATION", "PERSON", "TITLE"],
|
178 |
show_table=False,
|
179 |
manual=True,
|
180 |
title="",
|
181 |
displacy_options={
|
182 |
-
"colors":{
|
183 |
"EVENT": "#ec7063",
|
184 |
"LOCATION": "#45b39d",
|
185 |
"ORGANISATION": "#f39c12",
|
186 |
"PERSON": "#3498db",
|
187 |
-
"TITLE": "#a569bd "
|
|
|
|
|
|
|
|
|
|
|
188 |
}
|
189 |
})
|
190 |
-
# streamlit.markdown(f"<h4>Explore entities:<h4><br><div style='overflow:scroll; overflow-y: auto; max-height: 1050px;'>{df.to_html(justify='center')}</div>", unsafe_allow_html=True)
|
191 |
|
192 |
|
|
|
8 |
|
9 |
streamlit.set_page_config(layout="wide")
|
10 |
|
11 |
+
samples_test = {"FRAN_IR_050370.xml": "./samples/FRAN_IR_050370.xml"}
|
12 |
|
13 |
# TITLE APP
|
14 |
streamlit.title("NER4Archives visualizer")
|
15 |
+
streamlit.sidebar.title("NER4Archives visualizer")
|
16 |
+
streamlit.sidebar.write("## Motivation")
|
17 |
+
streamlit.sidebar.markdown("""<div style="text-align: justify;">
|
18 |
+
<p>This application is a proof-of-concept to apply and evaluate text classification task (also called Named-Entity Recognition) on
|
19 |
+
XML <a href="https://www.loc.gov/ead/" target="_blank">EAD</a> <a href="https://fr.wikipedia.org/wiki/Instrument_de_recherche" target="_blank">finding aids</a> and evaluate NER predictions.</p>
|
20 |
|
21 |
+
<p>In context of <a href="https://github.com/NER4Archives-project" target="_blank">NER4Archives project</a> (INRIA-ALMAnaCH/Archives nationales), the goal is to train NER models on annotated dataset
|
22 |
+
extracted from XML EAD finding aids and test it on new data.<p>
|
|
|
23 |
|
24 |
+
<p>Most of the models available here are trained with the NLP <a href="https://spacy.io/" target="_blank">spaCy</a>
|
25 |
+
framework and its available on the <a href="https://huggingface.co/ner4archives" target="_blank">HF organisation hub</a>.
|
26 |
+
Other models may be added in the future.</p>
|
27 |
+
|
28 |
+
<p>The project also includes a downstream entity linking task. The <a href="https://github.com/Lucaterre/spacyfishing" target="_blank">SpaCy fishing</a> extension (based on <a href="https://github.com/kermitt2/entity-fishing" target="_blank">entity-fishing</a>) is used here to support this purpose.</p>
|
29 |
+
|
30 |
+
NER4Archives - 2022</div>
|
31 |
+
""", unsafe_allow_html=True)
|
32 |
+
|
33 |
+
scol1, scol2 = streamlit.sidebar.columns(2)
|
34 |
+
scol1.image("./assets/an.png", width=170)
|
35 |
+
scol2.image("./assets/almanach_rouge-inria.png", width=100)
|
36 |
+
|
37 |
+
flag_file = False
|
38 |
|
39 |
# 1. User provides a XML EAD
|
40 |
+
streamlit.write("## π Input XML EAD:")
|
41 |
filename = streamlit.file_uploader("Load an XML EAD", type="xml")
|
42 |
+
streamlit.markdown("or use a XML EAD provided in [`samples/`](./samples) directory")
|
43 |
+
data = ""
|
44 |
+
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
flag_model = False
|
49 |
if filename is not None:
|
50 |
+
data = filename.getvalue().decode("utf-8").encode("utf-8")
|
51 |
+
if len(data) > 0:
|
52 |
flag_file = True
|
53 |
+
|
54 |
+
|
55 |
|
56 |
|
57 |
import re
|
|
|
84 |
flag_view = False
|
85 |
if flag_file:
|
86 |
col1, col2 = streamlit.columns(2)
|
87 |
+
col1.write("## ποΈ XML tree view:")
|
88 |
+
col2.write("## ποΈ Plain text view:")
|
89 |
parser = etree.XMLParser(ns_clean=True, recover=True, encoding='utf-8')
|
90 |
+
tree = etree.fromstring(data, parser=parser)
|
|
|
|
|
91 |
xml = etree.tostring(tree, pretty_print=True, encoding="utf-8").decode("utf-8")
|
92 |
col1.text_area("", value=xml, height=500, disabled=True)
|
93 |
dids, sentences = ead_strategy(tree)
|
|
|
96 |
flag_view = True
|
97 |
|
98 |
if flag_view:
|
99 |
+
streamlit.write("## βοΈ Configure NER model and options:")
|
100 |
models = []
|
101 |
for pipe in spacy.info()["pipelines"]:
|
102 |
models.append(pipe)
|
103 |
option = streamlit.selectbox(
|
104 |
+
'Choose a NER model you want to apply in the list: ',
|
105 |
models)
|
106 |
model = option
|
107 |
if model != "":
|
108 |
flag_model = True
|
109 |
+
linking = streamlit.checkbox('Check to apply named entity linking (entity-fishing component)', value=True)
|
110 |
linkingicon = "β
οΈ"
|
111 |
if linking is False:
|
112 |
linkingicon = "β"
|
113 |
streamlit.write("#### Actual Parameters:")
|
114 |
streamlit.write(f'- NER model selected: {option}\n - linking: {linkingicon}')
|
|
|
115 |
@Language.factory("custom_ner", default_config={
|
116 |
"model_name": "",
|
117 |
"sentences_to_process": []
|
|
|
124 |
sentences_to_process: list):
|
125 |
self.nlp = nlp
|
126 |
self.pipeline_ner = spacy.load(model_name)
|
127 |
+
f_score = self.pipeline_ner.meta['performance']['ents_f']
|
128 |
+
recall = self.pipeline_ner.meta['performance']['ents_r']
|
129 |
+
precision = self.pipeline_ner.meta['performance']['ents_p']
|
130 |
+
mcol1, mcol2, mcol3 = streamlit.columns(3)
|
131 |
+
mcol1.metric("F-Score", f'{f_score:.2f}')
|
132 |
+
mcol2.metric("Precision", f'{precision:.2f}')
|
133 |
+
mcol3.metric("Recall", f'{recall:.2f}')
|
134 |
self.sentences = sentences_to_process
|
135 |
|
136 |
def __call__(self, doc: Doc):
|
|
|
159 |
flag_vizualize = False
|
160 |
|
161 |
if flag_model:
|
162 |
+
if streamlit.button('Launch'):
|
163 |
with streamlit.spinner('Initialize NER...'):
|
164 |
huge_pipeline_linking = spacy.blank("fr")
|
165 |
huge_pipeline_linking.max_length = 5000000
|
166 |
huge_pipeline_linking.add_pipe('custom_ner', config={"model_name": model, "sentences_to_process": sentences})
|
167 |
if linking:
|
168 |
huge_pipeline_linking.add_pipe('entityfishing', config={"language": "fr"})
|
169 |
+
with streamlit.spinner('NER processing... (please, wait depends on data size)'):
|
170 |
doc = huge_pipeline_linking(plain)
|
171 |
|
172 |
entities = [
|
|
|
174 |
ent.end_char,
|
175 |
ent.text,
|
176 |
ent.label_,
|
177 |
+
ent._.url_wikidata,
|
178 |
+
ent._.nerd_score
|
179 |
) for ent in doc.ents
|
180 |
]
|
181 |
+
streamlit.success('π NER applied with success!')
|
182 |
|
183 |
|
184 |
df = pd.DataFrame(entities, columns=['START',
|
185 |
'END',
|
186 |
'MENTION',
|
187 |
'NER LABEL',
|
188 |
+
'WIKIDATA RESSOURCE (wikidata disambiguation)',
|
189 |
+
'LINKING SCORE'
|
190 |
])
|
191 |
|
192 |
+
streamlit.write("## π Explore named entities in table: ")
|
193 |
streamlit.write(df)
|
194 |
|
195 |
+
streamlit.write("## π Explore named entities in text: ")
|
196 |
spacy_streamlit.visualize_ner(
|
197 |
[{"text": doc.text,
|
198 |
"ents": [
|
|
|
203 |
"kb_url": ent._.url_wikidata
|
204 |
} for ent in doc.ents
|
205 |
]}],
|
206 |
+
labels=["EVENT", "LOCATION", "ORGANISATION", "PERSON", "TITLE", 'LOC', 'MISC', 'ORG', 'PER'],
|
207 |
show_table=False,
|
208 |
manual=True,
|
209 |
title="",
|
210 |
displacy_options={
|
211 |
+
"colors": {
|
212 |
"EVENT": "#ec7063",
|
213 |
"LOCATION": "#45b39d",
|
214 |
"ORGANISATION": "#f39c12",
|
215 |
"PERSON": "#3498db",
|
216 |
+
"TITLE": "#a569bd ",
|
217 |
+
"LOC": "#45b39d",
|
218 |
+
"MISC": "#ec7063",
|
219 |
+
"ORG": "#f39c12",
|
220 |
+
"PER": "#3498db"
|
221 |
+
|
222 |
}
|
223 |
})
|
|
|
224 |
|
225 |
|
requirements.txt
CHANGED
@@ -23,6 +23,7 @@ defusedxml==0.7.1
|
|
23 |
entrypoints==0.4
|
24 |
executing==0.9.1
|
25 |
fastjsonschema==2.16.1
|
|
|
26 |
fr-ner4archives-default-test @ https://huggingface.co/ner4archives/fr_ner4archives_default_test/resolve/main/fr_ner4archives_default_test-any-py3-none-any.whl
|
27 |
gitdb==4.0.9
|
28 |
GitPython==3.1.27
|
|
|
23 |
entrypoints==0.4
|
24 |
executing==0.9.1
|
25 |
fastjsonschema==2.16.1
|
26 |
+
fr-core-news-sm @ https://github.com/explosion/spacy-models/releases/download/fr_core_news_sm-3.3.0/fr_core_news_sm-3.3.0-py3-none-any.whl
|
27 |
fr-ner4archives-default-test @ https://huggingface.co/ner4archives/fr_ner4archives_default_test/resolve/main/fr_ner4archives_default_test-any-py3-none-any.whl
|
28 |
gitdb==4.0.9
|
29 |
GitPython==3.1.27
|
samples/FRAN_IR_050370.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|