Spaces:
Running
Running
Update batting_update.py
Browse files- batting_update.py +630 -622
batting_update.py
CHANGED
@@ -1,623 +1,631 @@
|
|
1 |
-
import pandas as pd
|
2 |
-
import numpy as np
|
3 |
-
import joblib
|
4 |
-
import math
|
5 |
-
import pickle
|
6 |
-
|
7 |
-
loaded_model = joblib.load('joblib_model/barrel_model.joblib')
|
8 |
-
in_zone_model = joblib.load('joblib_model/in_zone_model_knn_20240410.joblib')
|
9 |
-
attack_zone_model = joblib.load('joblib_model/model_attack_zone.joblib')
|
10 |
-
xwoba_model = joblib.load('joblib_model/xwoba_model.joblib')
|
11 |
-
px_model = joblib.load('joblib_model/linear_reg_model_x.joblib')
|
12 |
-
pz_model = joblib.load('joblib_model/linear_reg_model_z.joblib')
|
13 |
-
barrel_model = joblib.load('joblib_model/barrel_model.joblib')
|
14 |
-
|
15 |
-
|
16 |
-
def percentile(n):
|
17 |
-
def percentile_(x):
|
18 |
-
return np.nanpercentile(x, n)
|
19 |
-
percentile_.__name__ = 'percentile_%s' % n
|
20 |
-
return percentile_
|
21 |
-
|
22 |
-
|
23 |
-
def df_update(df=pd.DataFrame()):
|
24 |
-
df.loc[df['sz_top']==0,'sz_top'] = np.nan
|
25 |
-
df.loc[df['sz_bot']==0,'sz_bot'] = np.nan
|
26 |
-
|
27 |
-
|
28 |
-
df['in_zone'] = [x < 10 if x > 0 else np.nan for x in df['zone']]
|
29 |
-
if len(df.loc[(~df['x'].isnull())&(df['px'].isnull()),'px']) > 0:
|
30 |
-
df.loc[(~df['x'].isnull())&(df['px'].isnull()),'px'] = px_model.predict(df.loc[(~df['x'].isnull())&(df['px'].isnull())][['x']])
|
31 |
-
df.loc[(~df['y'].isnull())&(df['pz'].isnull()),'pz'] = px_model.predict(df.loc[(~df['y'].isnull())&(df['pz'].isnull())][['y']]) + 3.2
|
32 |
-
|
33 |
-
|
34 |
-
# df['in_zone'] = [x < 10 if x > 0 else np.nan for x in df['zone']]
|
35 |
-
# df_a['in_zone'] = [x < 10 if x > 0 else np.nan for x in df_a['zone']]
|
36 |
-
if len(df.loc[(~df['px'].isna())&
|
37 |
-
(df['in_zone'].isna())&
|
38 |
-
(~df['sz_top'].isna())]) > 0:
|
39 |
-
print('We found missing data')
|
40 |
-
df.loc[(~df['px'].isna())&
|
41 |
-
(df['in_zone'].isna())&
|
42 |
-
(~df['sz_top'].isna())&
|
43 |
-
(~df['pz'].isna())&
|
44 |
-
(~df['sz_bot'].isna())
|
45 |
-
,'in_zone'] = in_zone_model.predict(df.loc[(~df['px'].isna())&
|
46 |
-
(df['in_zone'].isna())&
|
47 |
-
(~df['sz_top'].isna())&
|
48 |
-
(~df['pz'].isna())&
|
49 |
-
(~df['sz_bot'].isna())][['px','pz','sz_top','sz_bot']].values)
|
50 |
-
hit_codes = ['single',
|
51 |
-
'double','home_run', 'triple']
|
52 |
-
|
53 |
-
ab_codes = ['single', 'strikeout', 'field_out',
|
54 |
-
'grounded_into_double_play', 'fielders_choice', 'force_out',
|
55 |
-
'double', 'field_error', 'home_run', 'triple',
|
56 |
-
'double_play',
|
57 |
-
'fielders_choice_out', 'strikeout_double_play',
|
58 |
-
'other_out','triple_play']
|
59 |
-
|
60 |
-
|
61 |
-
obp_true_codes = ['single', 'walk',
|
62 |
-
'double','home_run', 'triple',
|
63 |
-
'hit_by_pitch', 'intent_walk']
|
64 |
-
|
65 |
-
obp_codes = ['single', 'strikeout', 'walk', 'field_out',
|
66 |
-
'grounded_into_double_play', 'fielders_choice', 'force_out',
|
67 |
-
'double', 'sac_fly', 'field_error', 'home_run', 'triple',
|
68 |
-
'hit_by_pitch', 'double_play', 'intent_walk',
|
69 |
-
'fielders_choice_out', 'strikeout_double_play',
|
70 |
-
'sac_fly_double_play',
|
71 |
-
'other_out','triple_play']
|
72 |
-
|
73 |
-
|
74 |
-
contact_codes = ['In play, no out',
|
75 |
-
'Foul', 'In play, out(s)',
|
76 |
-
'In play, run(s)',
|
77 |
-
'Foul Bunt']
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
conditions_hit = [df.event_type.isin(hit_codes)]
|
82 |
-
choices_hit = [True]
|
83 |
-
df['hits'] = np.select(conditions_hit, choices_hit, default=False)
|
84 |
-
|
85 |
-
conditions_ab = [df.event_type.isin(ab_codes)]
|
86 |
-
choices_ab = [True]
|
87 |
-
df['ab'] = np.select(conditions_ab, choices_ab, default=False)
|
88 |
-
|
89 |
-
conditions_obp_true = [df.event_type.isin(obp_true_codes)]
|
90 |
-
choices_obp_true = [True]
|
91 |
-
df['on_base'] = np.select(conditions_obp_true, choices_obp_true, default=False)
|
92 |
-
|
93 |
-
conditions_obp = [df.event_type.isin(obp_codes)]
|
94 |
-
choices_obp = [True]
|
95 |
-
df['obp'] = np.select(conditions_obp, choices_obp, default=False)
|
96 |
-
|
97 |
-
bip_codes = ['In play, no out', 'In play, run(s)','In play, out(s)']
|
98 |
-
|
99 |
-
conditions_bip = [df.play_description.isin(bip_codes)]
|
100 |
-
choices_bip = [True]
|
101 |
-
df['bip'] = np.select(conditions_bip, choices_bip, default=False)
|
102 |
-
|
103 |
-
# conditions = [
|
104 |
-
# (df['launch_speed'].isna()),
|
105 |
-
# (df['launch_speed']*1.5 - df['launch_angle'] >= 117 ) & (df['launch_speed'] + df['launch_angle'] >= 124) & (df['launch_speed'] > 98) & (df['launch_angle'] >= 8) & (df['launch_angle'] <= 50)
|
106 |
-
# ]
|
107 |
-
df['bip_div'] = ~df.launch_speed.isna()
|
108 |
-
# choices = [False,True]
|
109 |
-
# df['barrel'] = np.select(conditions, choices, default=np.nan)
|
110 |
-
# df['barrel'] = loaded_model.predict(df[['launch_speed','launch_angle']].fillna(0).values)
|
111 |
-
df['barrel'] = np.nan
|
112 |
-
if len(df.loc[(~df['launch_speed'].isnull())]) > 0:
|
113 |
-
df.loc[(~df['launch_speed'].isnull())&(~df['launch_angle'].isnull()),'barrel'] = barrel_model.predict(df.loc[(~df['launch_speed'].isnull())&(~df['launch_angle'].isnull())][['launch_speed','launch_angle']])
|
114 |
-
|
115 |
-
|
116 |
-
conditions_ss = [
|
117 |
-
(df['launch_angle'].isna()),
|
118 |
-
(df['launch_angle'] >= 8 ) * (df['launch_angle'] <= 32 )
|
119 |
-
]
|
120 |
-
|
121 |
-
choices_ss = [False,True]
|
122 |
-
df['sweet_spot'] = np.select(conditions_ss, choices_ss, default=np.nan)
|
123 |
-
|
124 |
-
conditions_hh = [
|
125 |
-
(df['launch_speed'].isna()),
|
126 |
-
(df['launch_speed'] >= 94.5 )
|
127 |
-
]
|
128 |
-
|
129 |
-
choices_hh = [False,True]
|
130 |
-
df['hard_hit'] = np.select(conditions_hh, choices_hh, default=np.nan)
|
131 |
-
|
132 |
-
|
133 |
-
conditions_tb = [
|
134 |
-
(df['event_type']=='single'),
|
135 |
-
(df['event_type']=='double'),
|
136 |
-
(df['event_type']=='triple'),
|
137 |
-
(df['event_type']=='home_run'),
|
138 |
-
]
|
139 |
-
|
140 |
-
choices_tb = [1,2,3,4]
|
141 |
-
|
142 |
-
df['tb'] = np.select(conditions_tb, choices_tb, default=np.nan)
|
143 |
-
|
144 |
-
conditions_woba = [
|
145 |
-
(df['event_type'].isin(['strikeout', 'field_out', 'sac_fly', 'force_out',
|
146 |
-
'grounded_into_double_play', 'fielders_choice', 'field_error',
|
147 |
-
'sac_bunt', 'double_play', 'fielders_choice_out', 'strikeout_double_play',
|
148 |
-
'sac_fly_double_play', 'other_out'])),
|
149 |
-
(df['event_type']=='walk'),
|
150 |
-
(df['event_type']=='hit_by_pitch'),
|
151 |
-
(df['event_type']=='single'),
|
152 |
-
(df['event_type']=='double'),
|
153 |
-
(df['event_type']=='triple'),
|
154 |
-
(df['event_type']=='home_run'),
|
155 |
-
]
|
156 |
-
|
157 |
-
choices_woba = [0,
|
158 |
-
0.696,
|
159 |
-
0.726,
|
160 |
-
0.883,
|
161 |
-
1.244,
|
162 |
-
1.569,
|
163 |
-
2.004]
|
164 |
-
|
165 |
-
df['woba'] = np.select(conditions_woba, choices_woba, default=np.nan)
|
166 |
-
|
167 |
-
|
168 |
-
woba_codes = ['strikeout', 'field_out', 'single', 'walk', 'hit_by_pitch',
|
169 |
-
'double', 'sac_fly', 'force_out', 'home_run',
|
170 |
-
'grounded_into_double_play', 'fielders_choice', 'field_error',
|
171 |
-
'triple', 'sac_bunt', 'double_play',
|
172 |
-
'fielders_choice_out', 'strikeout_double_play',
|
173 |
-
'sac_fly_double_play', 'other_out']
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
conditions_woba_code = [
|
181 |
-
(df['event_type'].isin(woba_codes))
|
182 |
-
]
|
183 |
-
|
184 |
-
choices_woba_code = [1]
|
185 |
-
|
186 |
-
df['woba_codes'] = np.select(conditions_woba_code, choices_woba_code, default=np.nan)
|
187 |
-
|
188 |
-
|
189 |
-
df['woba_contact'] = [df['woba'].values[x] if df['bip'].values[x] == 1 else np.nan for x in range(len(df['woba_codes']))]
|
190 |
-
|
191 |
-
#df['in_zone'] = [x < 10 if type(x) == int else np.nan for x in df['zone']]
|
192 |
-
|
193 |
-
# df['in_zone_2'] = in_zone_model.predict(df[['x','y','sz_bot','sz_top']].fillna(0).values)
|
194 |
-
# df['in_zone_3'] = df['in_zone_2'] < 10
|
195 |
-
# df.loc[df['in_zone'].isna(),'in_zone'] = df.loc[df['in_zone'].isna(),'in_zone_3'].fillna(0)
|
196 |
-
|
197 |
-
|
198 |
-
df['whiffs'] = [1 if ((x == 'S')|(x == 'W')|(x =='T')) else 0 for x in df.play_code]
|
199 |
-
df['csw'] = [1 if ((x == 'S')|(x == 'W')|(x =='T')|(x == 'C')) else 0 for x in df.play_code]
|
200 |
-
df['swings'] = [1 if x == True else 0 for x in df.is_swing]
|
201 |
-
|
202 |
-
|
203 |
-
df['out_zone'] = df.in_zone == False
|
204 |
-
df['zone_swing'] = (df.in_zone == True)&(df.swings == 1)
|
205 |
-
df['zone_contact'] = (df.in_zone == True)&(df.swings == 1)&(df.whiffs == 0)
|
206 |
-
df['ozone_swing'] = (df.in_zone==False)&(df.swings == 1)
|
207 |
-
df['ozone_contact'] = (df.in_zone==False)&(df.swings == 1)&(df.whiffs == 0)
|
208 |
-
|
209 |
-
df['k'] = df.event_type.isin(list(filter(None, [x if 'strikeout' in x else '' for x in df.event_type.dropna().unique()])))
|
210 |
-
df['bb'] = df.event_type.isin(['walk','intent_walk'])
|
211 |
-
|
212 |
-
df['k_minus_bb'] = df['k'].astype(np.float32)-df['bb'].astype(np.float32)
|
213 |
-
df['bb_minus_k'] = df['bb'].astype(np.float32)-df['k'].astype(np.float32)
|
214 |
-
|
215 |
-
df['pa'] = [1 if isinstance(x, str) else 0 for x in df.event_type]
|
216 |
-
df['pitches'] = [1 if x else 0 for x in df.is_pitch]
|
217 |
-
|
218 |
-
|
219 |
-
df.loc[df['launch_speed'].isna(),'barrel'] = np.nan
|
220 |
-
|
221 |
-
|
222 |
-
pitch_cat = {'FA':'Fastball',
|
223 |
-
'FF':'Fastball',
|
224 |
-
'FT':'Fastball',
|
225 |
-
'FC':'Fastball',
|
226 |
-
'FS':'Off-Speed',
|
227 |
-
'FO':'Off-Speed',
|
228 |
-
'SI':'Fastball',
|
229 |
-
'ST':'Breaking',
|
230 |
-
'SL':'Breaking',
|
231 |
-
'CU':'Breaking',
|
232 |
-
'KC':'Breaking',
|
233 |
-
'SC':'Off-Speed',
|
234 |
-
'GY':'Off-Speed',
|
235 |
-
'SV':'Breaking',
|
236 |
-
'CS':'Breaking',
|
237 |
-
'CH':'Off-Speed',
|
238 |
-
'KN':'Off-Speed',
|
239 |
-
'EP':'Breaking',
|
240 |
-
'UN':np.nan,
|
241 |
-
'IN':np.nan,
|
242 |
-
'PO':np.nan,
|
243 |
-
'AB':np.nan,
|
244 |
-
'AS':np.nan,
|
245 |
-
'NP':np.nan}
|
246 |
-
df['pitch_category'] = df['pitch_type'].map(pitch_cat).fillna('Unknown')
|
247 |
-
df['average'] = 'average'
|
248 |
-
|
249 |
-
df.loc[df['trajectory'] == 'bunt_popup','trajectory'] = 'popup'
|
250 |
-
df.loc[df['trajectory'] == 'bunt_grounder','trajectory'] = 'ground_ball'
|
251 |
-
df.loc[df['trajectory'] == '','trajectory'] = np.nan
|
252 |
-
df.loc[df['trajectory'] == 'bunt_line_drive','trajectory'] = 'line_drive'
|
253 |
-
df[['trajectory_fly_ball','trajectory_ground_ball','trajectory_line_drive','trajectory_popup']] = pd.get_dummies(df['trajectory'], prefix='trajectory')
|
254 |
-
|
255 |
-
df['attack_zone'] = np.nan
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
df.loc[df[['px','pz','sz_top','sz_bot']].isnull().sum(axis=1)==0,'attack_zone'] = attack_zone_model.predict(df.loc[df[['px','pz','sz_top','sz_bot']].isnull().sum(axis=1)==0][['px','pz','sz_top','sz_bot']])
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
df['heart'] = df['attack_zone'] == 0
|
264 |
-
df['shadow'] = df['attack_zone'] == 1
|
265 |
-
df['chase'] = df['attack_zone'] == 2
|
266 |
-
df['waste'] = df['attack_zone'] == 3
|
267 |
-
|
268 |
-
df['heart_swing'] = (df['attack_zone'] == 0)&(df['swings']==1)
|
269 |
-
df['shadow_swing'] = (df['attack_zone'] == 1)&(df['swings']==1)
|
270 |
-
df['chase_swing'] = (df['attack_zone'] == 2)&(df['swings']==1)
|
271 |
-
df['waste_swing'] = (df['attack_zone'] == 3)&(df['swings']==1)
|
272 |
-
|
273 |
-
df['xwoba'] = np.nan
|
274 |
-
df['xwoba_contact'] = np.nan
|
275 |
-
|
276 |
-
if len(df.loc[df[['launch_angle','launch_speed']].isnull().sum(axis=1)==0,'xwoba']) > 0:
|
277 |
-
|
278 |
-
|
279 |
-
df.loc[df[['launch_angle','launch_speed']].isnull().sum(axis=1)==0,'xwoba'] = [sum(x) for x in xwoba_model.predict_proba(df.loc[df[['launch_angle','launch_speed']].isnull().sum(axis=1)==0][['launch_angle','launch_speed']]) * ([0, 0.883,1.244,1.569,2.004])]
|
280 |
-
|
281 |
-
## Assign a value of 0.696 to every walk in the dataset
|
282 |
-
df.loc[df['event_type'].isin(['walk']),'xwoba'] = 0.696
|
283 |
-
|
284 |
-
## Assign a value of 0.726 to every hit by pitch in the dataset
|
285 |
-
df.loc[df['event_type'].isin(['hit_by_pitch']),'xwoba'] = 0.726
|
286 |
-
|
287 |
-
## Assign a value of 0 to every Strikeout in the dataset
|
288 |
-
df.loc[df['event_type'].isin(['strikeout','strikeout_double_play']),'xwoba'] = 0
|
289 |
-
|
290 |
-
|
291 |
-
df.loc[df[['launch_angle','launch_speed']].isnull().sum(axis=1)==0,'xwoba_contact'] = [sum(x) for x in xwoba_model.predict_proba(df.loc[df[['launch_angle','launch_speed']].isnull().sum(axis=1)==0][['launch_angle','launch_speed']]) * ([0, 0.883,1.244,1.569,2.004])]
|
292 |
-
|
293 |
-
df['xwoba_codes'] = np.nan
|
294 |
-
df.loc[df[['launch_angle','launch_speed']].isnull().sum(axis=1)==0,'xwoba_codes'] = 1
|
295 |
-
## Assign a value of 0.696 to every walk in the dataset
|
296 |
-
df.loc[df['event_type'].isin(['walk']),'xwoba_codes'] = 1
|
297 |
-
|
298 |
-
## Assign a value of 0.726 to every hit by pitch in the dataset
|
299 |
-
df.loc[df['event_type'].isin(['hit_by_pitch']),'xwoba_codes'] = 1
|
300 |
-
|
301 |
-
## Assign a value of 0 to every Strikeout in the dataset
|
302 |
-
df.loc[df['event_type'].isin(['strikeout','strikeout_double_play']),'xwoba_codes'] = 1
|
303 |
-
return df
|
304 |
-
|
305 |
-
def df_update_summ(df=pd.DataFrame()):
|
306 |
-
df_summ = df.groupby(['batter_id','batter_name']).agg(
|
307 |
-
pa = ('pa','sum'),
|
308 |
-
ab = ('ab','sum'),
|
309 |
-
obp_pa = ('obp','sum'),
|
310 |
-
hits = ('hits','sum'),
|
311 |
-
on_base = ('on_base','sum'),
|
312 |
-
k = ('k','sum'),
|
313 |
-
bb = ('bb','sum'),
|
314 |
-
bb_minus_k = ('bb_minus_k','sum'),
|
315 |
-
csw = ('csw','sum'),
|
316 |
-
bip = ('bip','sum'),
|
317 |
-
bip_div = ('bip_div','sum'),
|
318 |
-
tb = ('tb','sum'),
|
319 |
-
woba = ('woba','sum'),
|
320 |
-
woba_contact = ('woba_contact','sum'),
|
321 |
-
xwoba = ('xwoba','sum'),
|
322 |
-
xwoba_contact = ('xwoba_contact','sum'),
|
323 |
-
woba_codes = ('woba_codes','sum'),
|
324 |
-
xwoba_codes = ('xwoba_codes','sum'),
|
325 |
-
hard_hit = ('hard_hit','sum'),
|
326 |
-
barrel = ('barrel','sum'),
|
327 |
-
sweet_spot = ('sweet_spot','sum'),
|
328 |
-
max_launch_speed = ('launch_speed','max'),
|
329 |
-
launch_speed_90 = ('launch_speed',percentile(90)),
|
330 |
-
launch_speed = ('launch_speed','mean'),
|
331 |
-
launch_angle = ('launch_angle','mean'),
|
332 |
-
pitches = ('is_pitch','sum'),
|
333 |
-
swings = ('swings','sum'),
|
334 |
-
in_zone = ('in_zone','sum'),
|
335 |
-
out_zone = ('out_zone','sum'),
|
336 |
-
whiffs = ('whiffs','sum'),
|
337 |
-
zone_swing = ('zone_swing','sum'),
|
338 |
-
zone_contact = ('zone_contact','sum'),
|
339 |
-
ozone_swing = ('ozone_swing','sum'),
|
340 |
-
ozone_contact = ('ozone_contact','sum'),
|
341 |
-
ground_ball = ('trajectory_ground_ball','sum'),
|
342 |
-
line_drive = ('trajectory_line_drive','sum'),
|
343 |
-
fly_ball =('trajectory_fly_ball','sum'),
|
344 |
-
pop_up = ('trajectory_popup','sum'),
|
345 |
-
attack_zone = ('attack_zone','count'),
|
346 |
-
heart = ('heart','sum'),
|
347 |
-
shadow = ('shadow','sum'),
|
348 |
-
chase = ('chase','sum'),
|
349 |
-
waste = ('waste','sum'),
|
350 |
-
heart_swing = ('heart_swing','sum'),
|
351 |
-
shadow_swing = ('shadow_swing','sum'),
|
352 |
-
chase_swing = ('chase_swing','sum'),
|
353 |
-
waste_swing = ('waste_swing','sum'),
|
354 |
-
).reset_index()
|
355 |
-
return df_summ
|
356 |
-
|
357 |
-
def df_update_summ_avg(df=pd.DataFrame()):
|
358 |
-
df_summ_avg = df.groupby(['average']).agg(
|
359 |
-
pa = ('pa','sum'),
|
360 |
-
ab = ('ab','sum'),
|
361 |
-
obp_pa = ('obp','sum'),
|
362 |
-
hits = ('hits','sum'),
|
363 |
-
on_base = ('on_base','sum'),
|
364 |
-
k = ('k','sum'),
|
365 |
-
bb = ('bb','sum'),
|
366 |
-
bb_minus_k = ('bb_minus_k','sum'),
|
367 |
-
csw = ('csw','sum'),
|
368 |
-
bip = ('bip','sum'),
|
369 |
-
bip_div = ('bip_div','sum'),
|
370 |
-
tb = ('tb','sum'),
|
371 |
-
woba = ('woba','sum'),
|
372 |
-
woba_contact = ('woba_contact','sum'),
|
373 |
-
xwoba = ('xwoba','sum'),
|
374 |
-
xwoba_contact = ('xwoba_contact','sum'),
|
375 |
-
woba_codes = ('woba_codes','sum'),
|
376 |
-
xwoba_codes = ('xwoba_codes','sum'),
|
377 |
-
hard_hit = ('hard_hit','sum'),
|
378 |
-
barrel = ('barrel','sum'),
|
379 |
-
sweet_spot = ('sweet_spot','sum'),
|
380 |
-
max_launch_speed = ('launch_speed','max'),
|
381 |
-
launch_speed_90 = ('launch_speed',percentile(90)),
|
382 |
-
launch_speed = ('launch_speed','mean'),
|
383 |
-
launch_angle = ('launch_angle','mean'),
|
384 |
-
pitches = ('is_pitch','sum'),
|
385 |
-
swings = ('swings','sum'),
|
386 |
-
in_zone = ('in_zone','sum'),
|
387 |
-
out_zone = ('out_zone','sum'),
|
388 |
-
whiffs = ('whiffs','sum'),
|
389 |
-
zone_swing = ('zone_swing','sum'),
|
390 |
-
zone_contact = ('zone_contact','sum'),
|
391 |
-
ozone_swing = ('ozone_swing','sum'),
|
392 |
-
ozone_contact = ('ozone_contact','sum'),
|
393 |
-
ground_ball = ('trajectory_ground_ball','sum'),
|
394 |
-
line_drive = ('trajectory_line_drive','sum'),
|
395 |
-
fly_ball =('trajectory_fly_ball','sum'),
|
396 |
-
pop_up = ('trajectory_popup','sum'),
|
397 |
-
attack_zone = ('attack_zone','count'),
|
398 |
-
heart = ('heart','sum'),
|
399 |
-
shadow = ('shadow','sum'),
|
400 |
-
chase = ('chase','sum'),
|
401 |
-
waste = ('waste','sum'),
|
402 |
-
heart_swing = ('heart_swing','sum'),
|
403 |
-
shadow_swing = ('shadow_swing','sum'),
|
404 |
-
chase_swing = ('chase_swing','sum'),
|
405 |
-
waste_swing = ('waste_swing','sum'),
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
).reset_index()
|
411 |
-
return df_summ_avg
|
412 |
-
|
413 |
-
def df_summ_changes(df_summ=pd.DataFrame()):
|
414 |
-
df_summ['avg'] = [df_summ.hits[x]/df_summ.ab[x] if df_summ.ab[x] != 0 else np.nan for x in range(len(df_summ))]
|
415 |
-
df_summ['obp'] = [df_summ.on_base[x]/df_summ.obp_pa[x] if df_summ.obp_pa[x] != 0 else np.nan for x in range(len(df_summ))]
|
416 |
-
df_summ['slg'] = [df_summ.tb[x]/df_summ.ab[x] if df_summ.ab[x] != 0 else np.nan for x in range(len(df_summ))]
|
417 |
-
|
418 |
-
df_summ['ops'] = df_summ['obp']+df_summ['slg']
|
419 |
-
|
420 |
-
df_summ['k_percent'] = [df_summ.k[x]/df_summ.pa[x] if df_summ.pa[x] != 0 else np.nan for x in range(len(df_summ))]
|
421 |
-
df_summ['bb_percent'] =[df_summ.bb[x]/df_summ.pa[x] if df_summ.pa[x] != 0 else np.nan for x in range(len(df_summ))]
|
422 |
-
df_summ['bb_minus_k_percent'] =[(df_summ.bb_minus_k[x])/df_summ.pa[x] if df_summ.pa[x] != 0 else np.nan for x in range(len(df_summ))]
|
423 |
-
|
424 |
-
df_summ['bb_over_k_percent'] =[df_summ.bb[x]/df_summ.k[x] if df_summ.k[x] != 0 else np.nan for x in range(len(df_summ))]
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
df_summ['csw_percent'] =[df_summ.csw[x]/df_summ.pitches[x] if df_summ.pitches[x] != 0 else np.nan for x in range(len(df_summ))]
|
430 |
-
|
431 |
-
|
432 |
-
df_summ['sweet_spot_percent'] = [df_summ.sweet_spot[x]/df_summ.bip_div[x] if df_summ.bip_div[x] != 0 else np.nan for x in range(len(df_summ))]
|
433 |
-
|
434 |
-
df_summ['woba_percent'] = [df_summ.woba[x]/df_summ.woba_codes[x] if df_summ.woba_codes[x] != 0 else np.nan for x in range(len(df_summ))]
|
435 |
-
df_summ['woba_percent_contact'] = [df_summ.woba_contact[x]/df_summ.bip[x] if df_summ.bip[x] != 0 else np.nan for x in range(len(df_summ))]
|
436 |
-
#df_summ['hard_hit_percent'] = [df_summ.sweet_spot[x]/df_summ.bip[x] if df_summ.bip[x] != 0 else np.nan for x in range(len(df_summ))]
|
437 |
-
df_summ['hard_hit_percent'] = [df_summ.hard_hit[x]/df_summ.bip_div[x] if df_summ.bip_div[x] != 0 else np.nan for x in range(len(df_summ))]
|
438 |
-
|
439 |
-
|
440 |
-
df_summ['barrel_percent'] = [df_summ.barrel[x]/df_summ.bip_div[x] if df_summ.bip_div[x] != 0 else np.nan for x in range(len(df_summ))]
|
441 |
-
|
442 |
-
df_summ['zone_contact_percent'] = [df_summ.zone_contact[x]/df_summ.zone_swing[x] if df_summ.zone_swing[x] != 0 else np.nan for x in range(len(df_summ))]
|
443 |
-
|
444 |
-
df_summ['zone_swing_percent'] = [df_summ.zone_swing[x]/df_summ.in_zone[x] if df_summ.in_zone[x] != 0 else np.nan for x in range(len(df_summ))]
|
445 |
-
|
446 |
-
df_summ['zone_percent'] = [df_summ.in_zone[x]/df_summ.pitches[x] if df_summ.pitches[x] > 0 else np.nan for x in range(len(df_summ))]
|
447 |
-
|
448 |
-
df_summ['chase_percent'] = [df_summ.ozone_swing[x]/(df_summ.pitches[x] - df_summ.in_zone[x]) if (df_summ.pitches[x]- df_summ.in_zone[x]) != 0 else np.nan for x in range(len(df_summ))]
|
449 |
-
|
450 |
-
df_summ['chase_contact'] = [df_summ.ozone_contact[x]/df_summ.ozone_swing[x] if df_summ.ozone_swing[x] != 0 else np.nan for x in range(len(df_summ))]
|
451 |
-
|
452 |
-
df_summ['swing_percent'] = [df_summ.swings[x]/df_summ.pitches[x] if df_summ.pitches[x] > 0 else np.nan for x in range(len(df_summ))]
|
453 |
-
|
454 |
-
df_summ['whiff_rate'] = [df_summ.whiffs[x]/df_summ.swings[x] if df_summ.swings[x] != 0 else np.nan for x in range(len(df_summ))]
|
455 |
-
|
456 |
-
df_summ['swstr_rate'] = [df_summ.whiffs[x]/df_summ.pitches[x] if df_summ.pitches[x] > 0 else np.nan for x in range(len(df_summ))]
|
457 |
-
|
458 |
-
df_summ['ground_ball_percent'] = [df_summ.ground_ball[x]/df_summ.bip[x] if df_summ.bip[x] != 0 else np.nan for x in range(len(df_summ))]
|
459 |
-
|
460 |
-
df_summ['line_drive_percent'] = [df_summ.line_drive[x]/df_summ.bip[x] if df_summ.bip[x] != 0 else np.nan for x in range(len(df_summ))]
|
461 |
-
|
462 |
-
df_summ['fly_ball_percent'] = [df_summ.fly_ball[x]/df_summ.bip[x] if df_summ.bip[x] != 0 else np.nan for x in range(len(df_summ))]
|
463 |
-
|
464 |
-
df_summ['pop_up_percent'] = [df_summ.pop_up[x]/df_summ.bip[x] if df_summ.bip[x] != 0 else np.nan for x in range(len(df_summ))]
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
df_summ['heart_zone_percent'] = [df_summ.heart[x]/df_summ.attack_zone[x] if df_summ.attack_zone[x] != 0 else np.nan for x in range(len(df_summ))]
|
469 |
-
|
470 |
-
df_summ['shadow_zone_percent'] = [df_summ.shadow[x]/df_summ.attack_zone[x] if df_summ.attack_zone[x] != 0 else np.nan for x in range(len(df_summ))]
|
471 |
-
|
472 |
-
df_summ['chase_zone_percent'] = [df_summ.chase[x]/df_summ.attack_zone[x] if df_summ.attack_zone[x] != 0 else np.nan for x in range(len(df_summ))]
|
473 |
-
|
474 |
-
df_summ['waste_zone_percent'] = [df_summ.waste[x]/df_summ.attack_zone[x] if df_summ.attack_zone[x] != 0 else np.nan for x in range(len(df_summ))]
|
475 |
-
|
476 |
-
|
477 |
-
df_summ['heart_zone_swing_percent'] = [df_summ.heart_swing[x]/df_summ.heart[x] if df_summ.heart[x] != 0 else np.nan for x in range(len(df_summ))]
|
478 |
-
|
479 |
-
df_summ['shadow_zone_swing_percent'] = [df_summ.shadow_swing[x]/df_summ.shadow[x] if df_summ.shadow[x] != 0 else np.nan for x in range(len(df_summ))]
|
480 |
-
|
481 |
-
df_summ['chase_zone_swing_percent'] = [df_summ.chase_swing[x]/df_summ.chase[x] if df_summ.chase[x] != 0 else np.nan for x in range(len(df_summ))]
|
482 |
-
|
483 |
-
df_summ['waste_zone_swing_percent'] = [df_summ.waste_swing[x]/df_summ.waste[x] if df_summ.waste[x] != 0 else np.nan for x in range(len(df_summ))]
|
484 |
-
|
485 |
-
|
486 |
-
df_summ['xwoba_percent'] = [df_summ.xwoba[x]/df_summ.xwoba_codes[x] if df_summ.xwoba_codes[x] != 0 else np.nan for x in range(len(df_summ))]
|
487 |
-
df_summ['xwoba_percent_contact'] = [df_summ.xwoba_contact[x]/df_summ.bip[x] if df_summ.bip[x] != 0 else np.nan for x in range(len(df_summ))]
|
488 |
-
|
489 |
-
df_summ = df_summ.dropna(subset=['bip'])
|
490 |
-
return df_summ
|
491 |
-
|
492 |
-
def df_summ_filter_out(df_summ=pd.DataFrame(),batter_select = 0):
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
df_summ_batter_pitch['
|
560 |
-
|
561 |
-
df_summ_batter_pitch['
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
df_summ_batter_pitch['
|
567 |
-
|
568 |
-
|
569 |
-
df_summ_batter_pitch['
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
df_summ_batter_pitch['
|
575 |
-
|
576 |
-
|
577 |
-
df_summ_batter_pitch['
|
578 |
-
|
579 |
-
df_summ_batter_pitch['
|
580 |
-
|
581 |
-
df_summ_batter_pitch['
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
df_summ_batter_pitch['
|
586 |
-
|
587 |
-
df_summ_batter_pitch['
|
588 |
-
|
589 |
-
df_summ_batter_pitch['
|
590 |
-
|
591 |
-
df_summ_batter_pitch['
|
592 |
-
|
593 |
-
df_summ_batter_pitch['
|
594 |
-
|
595 |
-
df_summ_batter_pitch['
|
596 |
-
|
597 |
-
df_summ_batter_pitch['
|
598 |
-
|
599 |
-
df_summ_batter_pitch['
|
600 |
-
|
601 |
-
df_summ_batter_pitch['
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
df_summ_batter_pitch['
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
623 |
return df_summ_batter_pitch
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import joblib
|
4 |
+
import math
|
5 |
+
import pickle
|
6 |
+
|
7 |
+
loaded_model = joblib.load('joblib_model/barrel_model.joblib')
|
8 |
+
in_zone_model = joblib.load('joblib_model/in_zone_model_knn_20240410.joblib')
|
9 |
+
attack_zone_model = joblib.load('joblib_model/model_attack_zone.joblib')
|
10 |
+
xwoba_model = joblib.load('joblib_model/xwoba_model.joblib')
|
11 |
+
px_model = joblib.load('joblib_model/linear_reg_model_x.joblib')
|
12 |
+
pz_model = joblib.load('joblib_model/linear_reg_model_z.joblib')
|
13 |
+
barrel_model = joblib.load('joblib_model/barrel_model.joblib')
|
14 |
+
|
15 |
+
|
16 |
+
def percentile(n):
|
17 |
+
def percentile_(x):
|
18 |
+
return np.nanpercentile(x, n)
|
19 |
+
percentile_.__name__ = 'percentile_%s' % n
|
20 |
+
return percentile_
|
21 |
+
|
22 |
+
|
23 |
+
def df_update(df=pd.DataFrame()):
|
24 |
+
df.loc[df['sz_top']==0,'sz_top'] = np.nan
|
25 |
+
df.loc[df['sz_bot']==0,'sz_bot'] = np.nan
|
26 |
+
|
27 |
+
|
28 |
+
df['in_zone'] = [x < 10 if x > 0 else np.nan for x in df['zone']]
|
29 |
+
if len(df.loc[(~df['x'].isnull())&(df['px'].isnull()),'px']) > 0:
|
30 |
+
df.loc[(~df['x'].isnull())&(df['px'].isnull()),'px'] = px_model.predict(df.loc[(~df['x'].isnull())&(df['px'].isnull())][['x']])
|
31 |
+
df.loc[(~df['y'].isnull())&(df['pz'].isnull()),'pz'] = px_model.predict(df.loc[(~df['y'].isnull())&(df['pz'].isnull())][['y']]) + 3.2
|
32 |
+
|
33 |
+
|
34 |
+
# df['in_zone'] = [x < 10 if x > 0 else np.nan for x in df['zone']]
|
35 |
+
# df_a['in_zone'] = [x < 10 if x > 0 else np.nan for x in df_a['zone']]
|
36 |
+
if len(df.loc[(~df['px'].isna())&
|
37 |
+
(df['in_zone'].isna())&
|
38 |
+
(~df['sz_top'].isna())]) > 0:
|
39 |
+
print('We found missing data')
|
40 |
+
df.loc[(~df['px'].isna())&
|
41 |
+
(df['in_zone'].isna())&
|
42 |
+
(~df['sz_top'].isna())&
|
43 |
+
(~df['pz'].isna())&
|
44 |
+
(~df['sz_bot'].isna())
|
45 |
+
,'in_zone'] = in_zone_model.predict(df.loc[(~df['px'].isna())&
|
46 |
+
(df['in_zone'].isna())&
|
47 |
+
(~df['sz_top'].isna())&
|
48 |
+
(~df['pz'].isna())&
|
49 |
+
(~df['sz_bot'].isna())][['px','pz','sz_top','sz_bot']].values)
|
50 |
+
hit_codes = ['single',
|
51 |
+
'double','home_run', 'triple']
|
52 |
+
|
53 |
+
ab_codes = ['single', 'strikeout', 'field_out',
|
54 |
+
'grounded_into_double_play', 'fielders_choice', 'force_out',
|
55 |
+
'double', 'field_error', 'home_run', 'triple',
|
56 |
+
'double_play',
|
57 |
+
'fielders_choice_out', 'strikeout_double_play',
|
58 |
+
'other_out','triple_play']
|
59 |
+
|
60 |
+
|
61 |
+
obp_true_codes = ['single', 'walk',
|
62 |
+
'double','home_run', 'triple',
|
63 |
+
'hit_by_pitch', 'intent_walk']
|
64 |
+
|
65 |
+
obp_codes = ['single', 'strikeout', 'walk', 'field_out',
|
66 |
+
'grounded_into_double_play', 'fielders_choice', 'force_out',
|
67 |
+
'double', 'sac_fly', 'field_error', 'home_run', 'triple',
|
68 |
+
'hit_by_pitch', 'double_play', 'intent_walk',
|
69 |
+
'fielders_choice_out', 'strikeout_double_play',
|
70 |
+
'sac_fly_double_play',
|
71 |
+
'other_out','triple_play']
|
72 |
+
|
73 |
+
|
74 |
+
contact_codes = ['In play, no out',
|
75 |
+
'Foul', 'In play, out(s)',
|
76 |
+
'In play, run(s)',
|
77 |
+
'Foul Bunt']
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
conditions_hit = [df.event_type.isin(hit_codes)]
|
82 |
+
choices_hit = [True]
|
83 |
+
df['hits'] = np.select(conditions_hit, choices_hit, default=False)
|
84 |
+
|
85 |
+
conditions_ab = [df.event_type.isin(ab_codes)]
|
86 |
+
choices_ab = [True]
|
87 |
+
df['ab'] = np.select(conditions_ab, choices_ab, default=False)
|
88 |
+
|
89 |
+
conditions_obp_true = [df.event_type.isin(obp_true_codes)]
|
90 |
+
choices_obp_true = [True]
|
91 |
+
df['on_base'] = np.select(conditions_obp_true, choices_obp_true, default=False)
|
92 |
+
|
93 |
+
conditions_obp = [df.event_type.isin(obp_codes)]
|
94 |
+
choices_obp = [True]
|
95 |
+
df['obp'] = np.select(conditions_obp, choices_obp, default=False)
|
96 |
+
|
97 |
+
bip_codes = ['In play, no out', 'In play, run(s)','In play, out(s)']
|
98 |
+
|
99 |
+
conditions_bip = [df.play_description.isin(bip_codes)]
|
100 |
+
choices_bip = [True]
|
101 |
+
df['bip'] = np.select(conditions_bip, choices_bip, default=False)
|
102 |
+
|
103 |
+
# conditions = [
|
104 |
+
# (df['launch_speed'].isna()),
|
105 |
+
# (df['launch_speed']*1.5 - df['launch_angle'] >= 117 ) & (df['launch_speed'] + df['launch_angle'] >= 124) & (df['launch_speed'] > 98) & (df['launch_angle'] >= 8) & (df['launch_angle'] <= 50)
|
106 |
+
# ]
|
107 |
+
df['bip_div'] = ~df.launch_speed.isna()
|
108 |
+
# choices = [False,True]
|
109 |
+
# df['barrel'] = np.select(conditions, choices, default=np.nan)
|
110 |
+
# df['barrel'] = loaded_model.predict(df[['launch_speed','launch_angle']].fillna(0).values)
|
111 |
+
df['barrel'] = np.nan
|
112 |
+
if len(df.loc[(~df['launch_speed'].isnull())]) > 0:
|
113 |
+
df.loc[(~df['launch_speed'].isnull())&(~df['launch_angle'].isnull()),'barrel'] = barrel_model.predict(df.loc[(~df['launch_speed'].isnull())&(~df['launch_angle'].isnull())][['launch_speed','launch_angle']])
|
114 |
+
|
115 |
+
|
116 |
+
conditions_ss = [
|
117 |
+
(df['launch_angle'].isna()),
|
118 |
+
(df['launch_angle'] >= 8 ) * (df['launch_angle'] <= 32 )
|
119 |
+
]
|
120 |
+
|
121 |
+
choices_ss = [False,True]
|
122 |
+
df['sweet_spot'] = np.select(conditions_ss, choices_ss, default=np.nan)
|
123 |
+
|
124 |
+
conditions_hh = [
|
125 |
+
(df['launch_speed'].isna()),
|
126 |
+
(df['launch_speed'] >= 94.5 )
|
127 |
+
]
|
128 |
+
|
129 |
+
choices_hh = [False,True]
|
130 |
+
df['hard_hit'] = np.select(conditions_hh, choices_hh, default=np.nan)
|
131 |
+
|
132 |
+
|
133 |
+
conditions_tb = [
|
134 |
+
(df['event_type']=='single'),
|
135 |
+
(df['event_type']=='double'),
|
136 |
+
(df['event_type']=='triple'),
|
137 |
+
(df['event_type']=='home_run'),
|
138 |
+
]
|
139 |
+
|
140 |
+
choices_tb = [1,2,3,4]
|
141 |
+
|
142 |
+
df['tb'] = np.select(conditions_tb, choices_tb, default=np.nan)
|
143 |
+
|
144 |
+
conditions_woba = [
|
145 |
+
(df['event_type'].isin(['strikeout', 'field_out', 'sac_fly', 'force_out',
|
146 |
+
'grounded_into_double_play', 'fielders_choice', 'field_error',
|
147 |
+
'sac_bunt', 'double_play', 'fielders_choice_out', 'strikeout_double_play',
|
148 |
+
'sac_fly_double_play', 'other_out'])),
|
149 |
+
(df['event_type']=='walk'),
|
150 |
+
(df['event_type']=='hit_by_pitch'),
|
151 |
+
(df['event_type']=='single'),
|
152 |
+
(df['event_type']=='double'),
|
153 |
+
(df['event_type']=='triple'),
|
154 |
+
(df['event_type']=='home_run'),
|
155 |
+
]
|
156 |
+
|
157 |
+
choices_woba = [0,
|
158 |
+
0.696,
|
159 |
+
0.726,
|
160 |
+
0.883,
|
161 |
+
1.244,
|
162 |
+
1.569,
|
163 |
+
2.004]
|
164 |
+
|
165 |
+
df['woba'] = np.select(conditions_woba, choices_woba, default=np.nan)
|
166 |
+
|
167 |
+
|
168 |
+
woba_codes = ['strikeout', 'field_out', 'single', 'walk', 'hit_by_pitch',
|
169 |
+
'double', 'sac_fly', 'force_out', 'home_run',
|
170 |
+
'grounded_into_double_play', 'fielders_choice', 'field_error',
|
171 |
+
'triple', 'sac_bunt', 'double_play',
|
172 |
+
'fielders_choice_out', 'strikeout_double_play',
|
173 |
+
'sac_fly_double_play', 'other_out']
|
174 |
+
|
175 |
+
|
176 |
+
|
177 |
+
|
178 |
+
|
179 |
+
|
180 |
+
conditions_woba_code = [
|
181 |
+
(df['event_type'].isin(woba_codes))
|
182 |
+
]
|
183 |
+
|
184 |
+
choices_woba_code = [1]
|
185 |
+
|
186 |
+
df['woba_codes'] = np.select(conditions_woba_code, choices_woba_code, default=np.nan)
|
187 |
+
|
188 |
+
|
189 |
+
df['woba_contact'] = [df['woba'].values[x] if df['bip'].values[x] == 1 else np.nan for x in range(len(df['woba_codes']))]
|
190 |
+
|
191 |
+
#df['in_zone'] = [x < 10 if type(x) == int else np.nan for x in df['zone']]
|
192 |
+
|
193 |
+
# df['in_zone_2'] = in_zone_model.predict(df[['x','y','sz_bot','sz_top']].fillna(0).values)
|
194 |
+
# df['in_zone_3'] = df['in_zone_2'] < 10
|
195 |
+
# df.loc[df['in_zone'].isna(),'in_zone'] = df.loc[df['in_zone'].isna(),'in_zone_3'].fillna(0)
|
196 |
+
|
197 |
+
|
198 |
+
df['whiffs'] = [1 if ((x == 'S')|(x == 'W')|(x =='T')) else 0 for x in df.play_code]
|
199 |
+
df['csw'] = [1 if ((x == 'S')|(x == 'W')|(x =='T')|(x == 'C')) else 0 for x in df.play_code]
|
200 |
+
df['swings'] = [1 if x == True else 0 for x in df.is_swing]
|
201 |
+
|
202 |
+
|
203 |
+
df['out_zone'] = df.in_zone == False
|
204 |
+
df['zone_swing'] = (df.in_zone == True)&(df.swings == 1)
|
205 |
+
df['zone_contact'] = (df.in_zone == True)&(df.swings == 1)&(df.whiffs == 0)
|
206 |
+
df['ozone_swing'] = (df.in_zone==False)&(df.swings == 1)
|
207 |
+
df['ozone_contact'] = (df.in_zone==False)&(df.swings == 1)&(df.whiffs == 0)
|
208 |
+
|
209 |
+
df['k'] = df.event_type.isin(list(filter(None, [x if 'strikeout' in x else '' for x in df.event_type.dropna().unique()])))
|
210 |
+
df['bb'] = df.event_type.isin(['walk','intent_walk'])
|
211 |
+
|
212 |
+
df['k_minus_bb'] = df['k'].astype(np.float32)-df['bb'].astype(np.float32)
|
213 |
+
df['bb_minus_k'] = df['bb'].astype(np.float32)-df['k'].astype(np.float32)
|
214 |
+
|
215 |
+
df['pa'] = [1 if isinstance(x, str) else 0 for x in df.event_type]
|
216 |
+
df['pitches'] = [1 if x else 0 for x in df.is_pitch]
|
217 |
+
|
218 |
+
|
219 |
+
df.loc[df['launch_speed'].isna(),'barrel'] = np.nan
|
220 |
+
|
221 |
+
|
222 |
+
pitch_cat = {'FA':'Fastball',
|
223 |
+
'FF':'Fastball',
|
224 |
+
'FT':'Fastball',
|
225 |
+
'FC':'Fastball',
|
226 |
+
'FS':'Off-Speed',
|
227 |
+
'FO':'Off-Speed',
|
228 |
+
'SI':'Fastball',
|
229 |
+
'ST':'Breaking',
|
230 |
+
'SL':'Breaking',
|
231 |
+
'CU':'Breaking',
|
232 |
+
'KC':'Breaking',
|
233 |
+
'SC':'Off-Speed',
|
234 |
+
'GY':'Off-Speed',
|
235 |
+
'SV':'Breaking',
|
236 |
+
'CS':'Breaking',
|
237 |
+
'CH':'Off-Speed',
|
238 |
+
'KN':'Off-Speed',
|
239 |
+
'EP':'Breaking',
|
240 |
+
'UN':np.nan,
|
241 |
+
'IN':np.nan,
|
242 |
+
'PO':np.nan,
|
243 |
+
'AB':np.nan,
|
244 |
+
'AS':np.nan,
|
245 |
+
'NP':np.nan}
|
246 |
+
df['pitch_category'] = df['pitch_type'].map(pitch_cat).fillna('Unknown')
|
247 |
+
df['average'] = 'average'
|
248 |
+
|
249 |
+
df.loc[df['trajectory'] == 'bunt_popup','trajectory'] = 'popup'
|
250 |
+
df.loc[df['trajectory'] == 'bunt_grounder','trajectory'] = 'ground_ball'
|
251 |
+
df.loc[df['trajectory'] == '','trajectory'] = np.nan
|
252 |
+
df.loc[df['trajectory'] == 'bunt_line_drive','trajectory'] = 'line_drive'
|
253 |
+
df[['trajectory_fly_ball','trajectory_ground_ball','trajectory_line_drive','trajectory_popup']] = pd.get_dummies(df['trajectory'], prefix='trajectory')
|
254 |
+
|
255 |
+
df['attack_zone'] = np.nan
|
256 |
+
|
257 |
+
|
258 |
+
|
259 |
+
df.loc[df[['px','pz','sz_top','sz_bot']].isnull().sum(axis=1)==0,'attack_zone'] = attack_zone_model.predict(df.loc[df[['px','pz','sz_top','sz_bot']].isnull().sum(axis=1)==0][['px','pz','sz_top','sz_bot']])
|
260 |
+
|
261 |
+
|
262 |
+
|
263 |
+
df['heart'] = df['attack_zone'] == 0
|
264 |
+
df['shadow'] = df['attack_zone'] == 1
|
265 |
+
df['chase'] = df['attack_zone'] == 2
|
266 |
+
df['waste'] = df['attack_zone'] == 3
|
267 |
+
|
268 |
+
df['heart_swing'] = (df['attack_zone'] == 0)&(df['swings']==1)
|
269 |
+
df['shadow_swing'] = (df['attack_zone'] == 1)&(df['swings']==1)
|
270 |
+
df['chase_swing'] = (df['attack_zone'] == 2)&(df['swings']==1)
|
271 |
+
df['waste_swing'] = (df['attack_zone'] == 3)&(df['swings']==1)
|
272 |
+
|
273 |
+
df['xwoba'] = np.nan
|
274 |
+
df['xwoba_contact'] = np.nan
|
275 |
+
|
276 |
+
if len(df.loc[df[['launch_angle','launch_speed']].isnull().sum(axis=1)==0,'xwoba']) > 0:
|
277 |
+
|
278 |
+
|
279 |
+
df.loc[df[['launch_angle','launch_speed']].isnull().sum(axis=1)==0,'xwoba'] = [sum(x) for x in xwoba_model.predict_proba(df.loc[df[['launch_angle','launch_speed']].isnull().sum(axis=1)==0][['launch_angle','launch_speed']]) * ([0, 0.883,1.244,1.569,2.004])]
|
280 |
+
|
281 |
+
## Assign a value of 0.696 to every walk in the dataset
|
282 |
+
df.loc[df['event_type'].isin(['walk']),'xwoba'] = 0.696
|
283 |
+
|
284 |
+
## Assign a value of 0.726 to every hit by pitch in the dataset
|
285 |
+
df.loc[df['event_type'].isin(['hit_by_pitch']),'xwoba'] = 0.726
|
286 |
+
|
287 |
+
## Assign a value of 0 to every Strikeout in the dataset
|
288 |
+
df.loc[df['event_type'].isin(['strikeout','strikeout_double_play']),'xwoba'] = 0
|
289 |
+
|
290 |
+
|
291 |
+
df.loc[df[['launch_angle','launch_speed']].isnull().sum(axis=1)==0,'xwoba_contact'] = [sum(x) for x in xwoba_model.predict_proba(df.loc[df[['launch_angle','launch_speed']].isnull().sum(axis=1)==0][['launch_angle','launch_speed']]) * ([0, 0.883,1.244,1.569,2.004])]
|
292 |
+
|
293 |
+
df['xwoba_codes'] = np.nan
|
294 |
+
df.loc[df[['launch_angle','launch_speed']].isnull().sum(axis=1)==0,'xwoba_codes'] = 1
|
295 |
+
## Assign a value of 0.696 to every walk in the dataset
|
296 |
+
df.loc[df['event_type'].isin(['walk']),'xwoba_codes'] = 1
|
297 |
+
|
298 |
+
## Assign a value of 0.726 to every hit by pitch in the dataset
|
299 |
+
df.loc[df['event_type'].isin(['hit_by_pitch']),'xwoba_codes'] = 1
|
300 |
+
|
301 |
+
## Assign a value of 0 to every Strikeout in the dataset
|
302 |
+
df.loc[df['event_type'].isin(['strikeout','strikeout_double_play']),'xwoba_codes'] = 1
|
303 |
+
return df
|
304 |
+
|
305 |
+
def df_update_summ(df=pd.DataFrame()):
|
306 |
+
df_summ = df.groupby(['batter_id','batter_name']).agg(
|
307 |
+
pa = ('pa','sum'),
|
308 |
+
ab = ('ab','sum'),
|
309 |
+
obp_pa = ('obp','sum'),
|
310 |
+
hits = ('hits','sum'),
|
311 |
+
on_base = ('on_base','sum'),
|
312 |
+
k = ('k','sum'),
|
313 |
+
bb = ('bb','sum'),
|
314 |
+
bb_minus_k = ('bb_minus_k','sum'),
|
315 |
+
csw = ('csw','sum'),
|
316 |
+
bip = ('bip','sum'),
|
317 |
+
bip_div = ('bip_div','sum'),
|
318 |
+
tb = ('tb','sum'),
|
319 |
+
woba = ('woba','sum'),
|
320 |
+
woba_contact = ('woba_contact','sum'),
|
321 |
+
xwoba = ('xwoba','sum'),
|
322 |
+
xwoba_contact = ('xwoba_contact','sum'),
|
323 |
+
woba_codes = ('woba_codes','sum'),
|
324 |
+
xwoba_codes = ('xwoba_codes','sum'),
|
325 |
+
hard_hit = ('hard_hit','sum'),
|
326 |
+
barrel = ('barrel','sum'),
|
327 |
+
sweet_spot = ('sweet_spot','sum'),
|
328 |
+
max_launch_speed = ('launch_speed','max'),
|
329 |
+
launch_speed_90 = ('launch_speed',percentile(90)),
|
330 |
+
launch_speed = ('launch_speed','mean'),
|
331 |
+
launch_angle = ('launch_angle','mean'),
|
332 |
+
pitches = ('is_pitch','sum'),
|
333 |
+
swings = ('swings','sum'),
|
334 |
+
in_zone = ('in_zone','sum'),
|
335 |
+
out_zone = ('out_zone','sum'),
|
336 |
+
whiffs = ('whiffs','sum'),
|
337 |
+
zone_swing = ('zone_swing','sum'),
|
338 |
+
zone_contact = ('zone_contact','sum'),
|
339 |
+
ozone_swing = ('ozone_swing','sum'),
|
340 |
+
ozone_contact = ('ozone_contact','sum'),
|
341 |
+
ground_ball = ('trajectory_ground_ball','sum'),
|
342 |
+
line_drive = ('trajectory_line_drive','sum'),
|
343 |
+
fly_ball =('trajectory_fly_ball','sum'),
|
344 |
+
pop_up = ('trajectory_popup','sum'),
|
345 |
+
attack_zone = ('attack_zone','count'),
|
346 |
+
heart = ('heart','sum'),
|
347 |
+
shadow = ('shadow','sum'),
|
348 |
+
chase = ('chase','sum'),
|
349 |
+
waste = ('waste','sum'),
|
350 |
+
heart_swing = ('heart_swing','sum'),
|
351 |
+
shadow_swing = ('shadow_swing','sum'),
|
352 |
+
chase_swing = ('chase_swing','sum'),
|
353 |
+
waste_swing = ('waste_swing','sum'),
|
354 |
+
).reset_index()
|
355 |
+
return df_summ
|
356 |
+
|
357 |
+
def df_update_summ_avg(df=pd.DataFrame()):
|
358 |
+
df_summ_avg = df.groupby(['average']).agg(
|
359 |
+
pa = ('pa','sum'),
|
360 |
+
ab = ('ab','sum'),
|
361 |
+
obp_pa = ('obp','sum'),
|
362 |
+
hits = ('hits','sum'),
|
363 |
+
on_base = ('on_base','sum'),
|
364 |
+
k = ('k','sum'),
|
365 |
+
bb = ('bb','sum'),
|
366 |
+
bb_minus_k = ('bb_minus_k','sum'),
|
367 |
+
csw = ('csw','sum'),
|
368 |
+
bip = ('bip','sum'),
|
369 |
+
bip_div = ('bip_div','sum'),
|
370 |
+
tb = ('tb','sum'),
|
371 |
+
woba = ('woba','sum'),
|
372 |
+
woba_contact = ('woba_contact','sum'),
|
373 |
+
xwoba = ('xwoba','sum'),
|
374 |
+
xwoba_contact = ('xwoba_contact','sum'),
|
375 |
+
woba_codes = ('woba_codes','sum'),
|
376 |
+
xwoba_codes = ('xwoba_codes','sum'),
|
377 |
+
hard_hit = ('hard_hit','sum'),
|
378 |
+
barrel = ('barrel','sum'),
|
379 |
+
sweet_spot = ('sweet_spot','sum'),
|
380 |
+
max_launch_speed = ('launch_speed','max'),
|
381 |
+
launch_speed_90 = ('launch_speed',percentile(90)),
|
382 |
+
launch_speed = ('launch_speed','mean'),
|
383 |
+
launch_angle = ('launch_angle','mean'),
|
384 |
+
pitches = ('is_pitch','sum'),
|
385 |
+
swings = ('swings','sum'),
|
386 |
+
in_zone = ('in_zone','sum'),
|
387 |
+
out_zone = ('out_zone','sum'),
|
388 |
+
whiffs = ('whiffs','sum'),
|
389 |
+
zone_swing = ('zone_swing','sum'),
|
390 |
+
zone_contact = ('zone_contact','sum'),
|
391 |
+
ozone_swing = ('ozone_swing','sum'),
|
392 |
+
ozone_contact = ('ozone_contact','sum'),
|
393 |
+
ground_ball = ('trajectory_ground_ball','sum'),
|
394 |
+
line_drive = ('trajectory_line_drive','sum'),
|
395 |
+
fly_ball =('trajectory_fly_ball','sum'),
|
396 |
+
pop_up = ('trajectory_popup','sum'),
|
397 |
+
attack_zone = ('attack_zone','count'),
|
398 |
+
heart = ('heart','sum'),
|
399 |
+
shadow = ('shadow','sum'),
|
400 |
+
chase = ('chase','sum'),
|
401 |
+
waste = ('waste','sum'),
|
402 |
+
heart_swing = ('heart_swing','sum'),
|
403 |
+
shadow_swing = ('shadow_swing','sum'),
|
404 |
+
chase_swing = ('chase_swing','sum'),
|
405 |
+
waste_swing = ('waste_swing','sum'),
|
406 |
+
|
407 |
+
|
408 |
+
|
409 |
+
|
410 |
+
).reset_index()
|
411 |
+
return df_summ_avg
|
412 |
+
|
413 |
+
def df_summ_changes(df_summ=pd.DataFrame()):
|
414 |
+
df_summ['avg'] = [df_summ.hits[x]/df_summ.ab[x] if df_summ.ab[x] != 0 else np.nan for x in range(len(df_summ))]
|
415 |
+
df_summ['obp'] = [df_summ.on_base[x]/df_summ.obp_pa[x] if df_summ.obp_pa[x] != 0 else np.nan for x in range(len(df_summ))]
|
416 |
+
df_summ['slg'] = [df_summ.tb[x]/df_summ.ab[x] if df_summ.ab[x] != 0 else np.nan for x in range(len(df_summ))]
|
417 |
+
|
418 |
+
df_summ['ops'] = df_summ['obp']+df_summ['slg']
|
419 |
+
|
420 |
+
df_summ['k_percent'] = [df_summ.k[x]/df_summ.pa[x] if df_summ.pa[x] != 0 else np.nan for x in range(len(df_summ))]
|
421 |
+
df_summ['bb_percent'] =[df_summ.bb[x]/df_summ.pa[x] if df_summ.pa[x] != 0 else np.nan for x in range(len(df_summ))]
|
422 |
+
df_summ['bb_minus_k_percent'] =[(df_summ.bb_minus_k[x])/df_summ.pa[x] if df_summ.pa[x] != 0 else np.nan for x in range(len(df_summ))]
|
423 |
+
|
424 |
+
df_summ['bb_over_k_percent'] =[df_summ.bb[x]/df_summ.k[x] if df_summ.k[x] != 0 else np.nan for x in range(len(df_summ))]
|
425 |
+
|
426 |
+
|
427 |
+
|
428 |
+
|
429 |
+
df_summ['csw_percent'] =[df_summ.csw[x]/df_summ.pitches[x] if df_summ.pitches[x] != 0 else np.nan for x in range(len(df_summ))]
|
430 |
+
|
431 |
+
|
432 |
+
df_summ['sweet_spot_percent'] = [df_summ.sweet_spot[x]/df_summ.bip_div[x] if df_summ.bip_div[x] != 0 else np.nan for x in range(len(df_summ))]
|
433 |
+
|
434 |
+
df_summ['woba_percent'] = [df_summ.woba[x]/df_summ.woba_codes[x] if df_summ.woba_codes[x] != 0 else np.nan for x in range(len(df_summ))]
|
435 |
+
df_summ['woba_percent_contact'] = [df_summ.woba_contact[x]/df_summ.bip[x] if df_summ.bip[x] != 0 else np.nan for x in range(len(df_summ))]
|
436 |
+
#df_summ['hard_hit_percent'] = [df_summ.sweet_spot[x]/df_summ.bip[x] if df_summ.bip[x] != 0 else np.nan for x in range(len(df_summ))]
|
437 |
+
df_summ['hard_hit_percent'] = [df_summ.hard_hit[x]/df_summ.bip_div[x] if df_summ.bip_div[x] != 0 else np.nan for x in range(len(df_summ))]
|
438 |
+
|
439 |
+
|
440 |
+
df_summ['barrel_percent'] = [df_summ.barrel[x]/df_summ.bip_div[x] if df_summ.bip_div[x] != 0 else np.nan for x in range(len(df_summ))]
|
441 |
+
|
442 |
+
df_summ['zone_contact_percent'] = [df_summ.zone_contact[x]/df_summ.zone_swing[x] if df_summ.zone_swing[x] != 0 else np.nan for x in range(len(df_summ))]
|
443 |
+
|
444 |
+
df_summ['zone_swing_percent'] = [df_summ.zone_swing[x]/df_summ.in_zone[x] if df_summ.in_zone[x] != 0 else np.nan for x in range(len(df_summ))]
|
445 |
+
|
446 |
+
df_summ['zone_percent'] = [df_summ.in_zone[x]/df_summ.pitches[x] if df_summ.pitches[x] > 0 else np.nan for x in range(len(df_summ))]
|
447 |
+
|
448 |
+
df_summ['chase_percent'] = [df_summ.ozone_swing[x]/(df_summ.pitches[x] - df_summ.in_zone[x]) if (df_summ.pitches[x]- df_summ.in_zone[x]) != 0 else np.nan for x in range(len(df_summ))]
|
449 |
+
|
450 |
+
df_summ['chase_contact'] = [df_summ.ozone_contact[x]/df_summ.ozone_swing[x] if df_summ.ozone_swing[x] != 0 else np.nan for x in range(len(df_summ))]
|
451 |
+
|
452 |
+
df_summ['swing_percent'] = [df_summ.swings[x]/df_summ.pitches[x] if df_summ.pitches[x] > 0 else np.nan for x in range(len(df_summ))]
|
453 |
+
|
454 |
+
df_summ['whiff_rate'] = [df_summ.whiffs[x]/df_summ.swings[x] if df_summ.swings[x] != 0 else np.nan for x in range(len(df_summ))]
|
455 |
+
|
456 |
+
df_summ['swstr_rate'] = [df_summ.whiffs[x]/df_summ.pitches[x] if df_summ.pitches[x] > 0 else np.nan for x in range(len(df_summ))]
|
457 |
+
|
458 |
+
df_summ['ground_ball_percent'] = [df_summ.ground_ball[x]/df_summ.bip[x] if df_summ.bip[x] != 0 else np.nan for x in range(len(df_summ))]
|
459 |
+
|
460 |
+
df_summ['line_drive_percent'] = [df_summ.line_drive[x]/df_summ.bip[x] if df_summ.bip[x] != 0 else np.nan for x in range(len(df_summ))]
|
461 |
+
|
462 |
+
df_summ['fly_ball_percent'] = [df_summ.fly_ball[x]/df_summ.bip[x] if df_summ.bip[x] != 0 else np.nan for x in range(len(df_summ))]
|
463 |
+
|
464 |
+
df_summ['pop_up_percent'] = [df_summ.pop_up[x]/df_summ.bip[x] if df_summ.bip[x] != 0 else np.nan for x in range(len(df_summ))]
|
465 |
+
|
466 |
+
|
467 |
+
|
468 |
+
df_summ['heart_zone_percent'] = [df_summ.heart[x]/df_summ.attack_zone[x] if df_summ.attack_zone[x] != 0 else np.nan for x in range(len(df_summ))]
|
469 |
+
|
470 |
+
df_summ['shadow_zone_percent'] = [df_summ.shadow[x]/df_summ.attack_zone[x] if df_summ.attack_zone[x] != 0 else np.nan for x in range(len(df_summ))]
|
471 |
+
|
472 |
+
df_summ['chase_zone_percent'] = [df_summ.chase[x]/df_summ.attack_zone[x] if df_summ.attack_zone[x] != 0 else np.nan for x in range(len(df_summ))]
|
473 |
+
|
474 |
+
df_summ['waste_zone_percent'] = [df_summ.waste[x]/df_summ.attack_zone[x] if df_summ.attack_zone[x] != 0 else np.nan for x in range(len(df_summ))]
|
475 |
+
|
476 |
+
|
477 |
+
df_summ['heart_zone_swing_percent'] = [df_summ.heart_swing[x]/df_summ.heart[x] if df_summ.heart[x] != 0 else np.nan for x in range(len(df_summ))]
|
478 |
+
|
479 |
+
df_summ['shadow_zone_swing_percent'] = [df_summ.shadow_swing[x]/df_summ.shadow[x] if df_summ.shadow[x] != 0 else np.nan for x in range(len(df_summ))]
|
480 |
+
|
481 |
+
df_summ['chase_zone_swing_percent'] = [df_summ.chase_swing[x]/df_summ.chase[x] if df_summ.chase[x] != 0 else np.nan for x in range(len(df_summ))]
|
482 |
+
|
483 |
+
df_summ['waste_zone_swing_percent'] = [df_summ.waste_swing[x]/df_summ.waste[x] if df_summ.waste[x] != 0 else np.nan for x in range(len(df_summ))]
|
484 |
+
|
485 |
+
|
486 |
+
df_summ['xwoba_percent'] = [df_summ.xwoba[x]/df_summ.xwoba_codes[x] if df_summ.xwoba_codes[x] != 0 else np.nan for x in range(len(df_summ))]
|
487 |
+
df_summ['xwoba_percent_contact'] = [df_summ.xwoba_contact[x]/df_summ.bip[x] if df_summ.bip[x] != 0 else np.nan for x in range(len(df_summ))]
|
488 |
+
|
489 |
+
df_summ = df_summ.dropna(subset=['bip'])
|
490 |
+
return df_summ
|
491 |
+
|
492 |
+
def df_summ_filter_out(df_summ=pd.DataFrame(),batter_select = 0,date_min=0):
|
493 |
+
import datetime
|
494 |
+
|
495 |
+
def weeks_after(day):
|
496 |
+
today = datetime.date.today()
|
497 |
+
time_difference = today - day
|
498 |
+
weeks = time_difference.days // 7
|
499 |
+
return weeks
|
500 |
+
|
501 |
+
df_summ_filter = df_summ[df_summ['pa'] >= min(math.floor(df_summ.xs(batter_select,level=0)['pa']/10)*10,500,weeks_after(date_min)*20)]
|
502 |
+
df_summ_filter_pct = df_summ_filter.rank(pct=True,ascending=True)
|
503 |
+
df_summ_player = df_summ.xs(batter_select,level=0)
|
504 |
+
df_summ_player_pct = df_summ_filter_pct.xs(batter_select,level=0)
|
505 |
+
return df_summ_filter,df_summ_filter_pct,df_summ_player,df_summ_player_pct
|
506 |
+
|
507 |
+
def df_summ_batter_pitch_up(df=pd.DataFrame()):
|
508 |
+
df_summ_batter_pitch = df.dropna(subset=['pitch_category']).groupby(['batter_id','batter_name','pitch_category']).agg(
|
509 |
+
pa = ('pa','sum'),
|
510 |
+
ab = ('ab','sum'),
|
511 |
+
obp_pa = ('obp','sum'),
|
512 |
+
hits = ('hits','sum'),
|
513 |
+
on_base = ('on_base','sum'),
|
514 |
+
k = ('k','sum'),
|
515 |
+
bb = ('bb','sum'),
|
516 |
+
bb_minus_k = ('bb_minus_k','sum'),
|
517 |
+
csw = ('csw','sum'),
|
518 |
+
bip = ('bip','sum'),
|
519 |
+
bip_div = ('bip_div','sum'),
|
520 |
+
tb = ('tb','sum'),
|
521 |
+
woba = ('woba','sum'),
|
522 |
+
woba_contact = ('xwoba_contact','sum'),
|
523 |
+
xwoba = ('xwoba','sum'),
|
524 |
+
xwoba_contact = ('xwoba','sum'),
|
525 |
+
woba_codes = ('woba_codes','sum'),
|
526 |
+
xwoba_codes = ('xwoba_codes','sum'),
|
527 |
+
hard_hit = ('hard_hit','sum'),
|
528 |
+
barrel = ('barrel','sum'),
|
529 |
+
sweet_spot = ('sweet_spot','sum'),
|
530 |
+
max_launch_speed = ('launch_speed','max'),
|
531 |
+
launch_speed_90 = ('launch_speed',percentile(90)),
|
532 |
+
launch_speed = ('launch_speed','mean'),
|
533 |
+
launch_angle = ('launch_angle','mean'),
|
534 |
+
pitches = ('is_pitch','sum'),
|
535 |
+
swings = ('swings','sum'),
|
536 |
+
in_zone = ('in_zone','sum'),
|
537 |
+
out_zone = ('out_zone','sum'),
|
538 |
+
whiffs = ('whiffs','sum'),
|
539 |
+
zone_swing = ('zone_swing','sum'),
|
540 |
+
zone_contact = ('zone_contact','sum'),
|
541 |
+
ozone_swing = ('ozone_swing','sum'),
|
542 |
+
ozone_contact = ('ozone_contact','sum'),
|
543 |
+
ground_ball = ('trajectory_ground_ball','sum'),
|
544 |
+
line_drive = ('trajectory_line_drive','sum'),
|
545 |
+
fly_ball =('trajectory_fly_ball','sum'),
|
546 |
+
pop_up = ('trajectory_popup','sum'),
|
547 |
+
attack_zone = ('attack_zone','count'),
|
548 |
+
heart = ('heart','sum'),
|
549 |
+
shadow = ('shadow','sum'),
|
550 |
+
chase = ('chase','sum'),
|
551 |
+
waste = ('waste','sum'),
|
552 |
+
heart_swing = ('heart_swing','sum'),
|
553 |
+
shadow_swing = ('shadow_swing','sum'),
|
554 |
+
chase_swing = ('chase_swing','sum'),
|
555 |
+
waste_swing = ('waste_swing','sum'),
|
556 |
+
).reset_index()
|
557 |
+
|
558 |
+
#return df_summ_batter_pitch
|
559 |
+
df_summ_batter_pitch['avg'] = [df_summ_batter_pitch.hits[x]/df_summ_batter_pitch.ab[x] if df_summ_batter_pitch.ab[x] != 0 else np.nan for x in range(len(df_summ_batter_pitch))]
|
560 |
+
df_summ_batter_pitch['obp'] = [df_summ_batter_pitch.on_base[x]/df_summ_batter_pitch.obp_pa[x] if df_summ_batter_pitch.obp_pa[x] != 0 else np.nan for x in range(len(df_summ_batter_pitch))]
|
561 |
+
df_summ_batter_pitch['slg'] = [df_summ_batter_pitch.tb[x]/df_summ_batter_pitch.ab[x] if df_summ_batter_pitch.ab[x] != 0 else np.nan for x in range(len(df_summ_batter_pitch))]
|
562 |
+
|
563 |
+
df_summ_batter_pitch['ops'] = df_summ_batter_pitch['obp']+df_summ_batter_pitch['slg']
|
564 |
+
|
565 |
+
df_summ_batter_pitch['k_percent'] = [df_summ_batter_pitch.k[x]/df_summ_batter_pitch.pa[x] if df_summ_batter_pitch.pa[x] != 0 else np.nan for x in range(len(df_summ_batter_pitch))]
|
566 |
+
df_summ_batter_pitch['bb_percent'] =[df_summ_batter_pitch.bb[x]/df_summ_batter_pitch.pa[x] if df_summ_batter_pitch.pa[x] != 0 else np.nan for x in range(len(df_summ_batter_pitch))]
|
567 |
+
df_summ_batter_pitch['bb_minus_k_percent'] =[(df_summ_batter_pitch.bb_minus_k[x])/df_summ_batter_pitch.pa[x] if df_summ_batter_pitch.pa[x] != 0 else np.nan for x in range(len(df_summ_batter_pitch))]
|
568 |
+
|
569 |
+
df_summ_batter_pitch['bb_over_k_percent'] =[df_summ_batter_pitch.bb[x]/df_summ_batter_pitch.k[x] if df_summ_batter_pitch.k[x] != 0 else np.nan for x in range(len(df_summ_batter_pitch))]
|
570 |
+
|
571 |
+
|
572 |
+
|
573 |
+
|
574 |
+
df_summ_batter_pitch['csw_percent'] =[df_summ_batter_pitch.csw[x]/df_summ_batter_pitch.pitches[x] if df_summ_batter_pitch.pitches[x] != 0 else np.nan for x in range(len(df_summ_batter_pitch))]
|
575 |
+
|
576 |
+
|
577 |
+
df_summ_batter_pitch['sweet_spot_percent'] = [df_summ_batter_pitch.sweet_spot[x]/df_summ_batter_pitch.bip_div[x] if df_summ_batter_pitch.bip_div[x] != 0 else np.nan for x in range(len(df_summ_batter_pitch))]
|
578 |
+
|
579 |
+
df_summ_batter_pitch['woba_percent'] = [df_summ_batter_pitch.woba[x]/df_summ_batter_pitch.woba_codes[x] if df_summ_batter_pitch.woba_codes[x] != 0 else np.nan for x in range(len(df_summ_batter_pitch))]
|
580 |
+
df_summ_batter_pitch['woba_percent_contact'] = [df_summ_batter_pitch.woba_contact[x]/df_summ_batter_pitch.bip[x] if df_summ_batter_pitch.bip[x] != 0 else np.nan for x in range(len(df_summ_batter_pitch))]
|
581 |
+
#df_summ_batter_pitch['hard_hit_percent'] = [df_summ_batter_pitch.sweet_spot[x]/df_summ_batter_pitch.bip[x] if df_summ_batter_pitch.bip[x] != 0 else np.nan for x in range(len(df_summ_batter_pitch))]
|
582 |
+
df_summ_batter_pitch['hard_hit_percent'] = [df_summ_batter_pitch.hard_hit[x]/df_summ_batter_pitch.bip_div[x] if df_summ_batter_pitch.bip_div[x] != 0 else np.nan for x in range(len(df_summ_batter_pitch))]
|
583 |
+
|
584 |
+
|
585 |
+
df_summ_batter_pitch['barrel_percent'] = [df_summ_batter_pitch.barrel[x]/df_summ_batter_pitch.bip_div[x] if df_summ_batter_pitch.bip_div[x] != 0 else np.nan for x in range(len(df_summ_batter_pitch))]
|
586 |
+
|
587 |
+
df_summ_batter_pitch['zone_contact_percent'] = [df_summ_batter_pitch.zone_contact[x]/df_summ_batter_pitch.zone_swing[x] if df_summ_batter_pitch.zone_swing[x] != 0 else np.nan for x in range(len(df_summ_batter_pitch))]
|
588 |
+
|
589 |
+
df_summ_batter_pitch['zone_swing_percent'] = [df_summ_batter_pitch.zone_swing[x]/df_summ_batter_pitch.in_zone[x] if df_summ_batter_pitch.in_zone[x] != 0 else np.nan for x in range(len(df_summ_batter_pitch))]
|
590 |
+
|
591 |
+
df_summ_batter_pitch['zone_percent'] = [df_summ_batter_pitch.in_zone[x]/df_summ_batter_pitch.pitches[x] if df_summ_batter_pitch.pitches[x] != 0 else np.nan for x in range(len(df_summ_batter_pitch))]
|
592 |
+
|
593 |
+
df_summ_batter_pitch['chase_percent'] = [df_summ_batter_pitch.ozone_swing[x]/(df_summ_batter_pitch.pitches[x] - df_summ_batter_pitch.in_zone[x]) if (df_summ_batter_pitch.pitches[x]- df_summ_batter_pitch.in_zone[x]) != 0 else np.nan for x in range(len(df_summ_batter_pitch))]
|
594 |
+
|
595 |
+
df_summ_batter_pitch['chase_contact'] = [df_summ_batter_pitch.ozone_contact[x]/df_summ_batter_pitch.ozone_swing[x] if df_summ_batter_pitch.ozone_swing[x] != 0 else np.nan for x in range(len(df_summ_batter_pitch))]
|
596 |
+
|
597 |
+
df_summ_batter_pitch['swing_percent'] = [df_summ_batter_pitch.swings[x]/df_summ_batter_pitch.pitches[x] if df_summ_batter_pitch.pitches[x] != 0 else np.nan for x in range(len(df_summ_batter_pitch))]
|
598 |
+
|
599 |
+
df_summ_batter_pitch['whiff_rate'] = [df_summ_batter_pitch.whiffs[x]/df_summ_batter_pitch.swings[x] if df_summ_batter_pitch.swings[x] != 0 else np.nan for x in range(len(df_summ_batter_pitch))]
|
600 |
+
|
601 |
+
df_summ_batter_pitch['swstr_rate'] = [df_summ_batter_pitch.whiffs[x]/df_summ_batter_pitch.pitches[x] if df_summ_batter_pitch.pitches[x] != 0 else np.nan for x in range(len(df_summ_batter_pitch))]
|
602 |
+
|
603 |
+
df_summ_batter_pitch['heart_zone_percent'] = [df_summ_batter_pitch.heart[x]/df_summ_batter_pitch.attack_zone[x] if df_summ_batter_pitch.attack_zone[x] != 0 else np.nan for x in range(len(df_summ_batter_pitch))]
|
604 |
+
|
605 |
+
df_summ_batter_pitch['shadow_zone_percent'] = [df_summ_batter_pitch.shadow[x]/df_summ_batter_pitch.attack_zone[x] if df_summ_batter_pitch.attack_zone[x] != 0 else np.nan for x in range(len(df_summ_batter_pitch))]
|
606 |
+
|
607 |
+
df_summ_batter_pitch['chase_zone_percent'] = [df_summ_batter_pitch.chase[x]/df_summ_batter_pitch.attack_zone[x] if df_summ_batter_pitch.attack_zone[x] != 0 else np.nan for x in range(len(df_summ_batter_pitch))]
|
608 |
+
|
609 |
+
df_summ_batter_pitch['waste_zone_percent'] = [df_summ_batter_pitch.waste[x]/df_summ_batter_pitch.attack_zone[x] if df_summ_batter_pitch.attack_zone[x] != 0 else np.nan for x in range(len(df_summ_batter_pitch))]
|
610 |
+
|
611 |
+
|
612 |
+
df_summ_batter_pitch['heart_zone_swing_percent'] = [df_summ_batter_pitch.heart_swing[x]/df_summ_batter_pitch.heart[x] if df_summ_batter_pitch.heart[x] != 0 else np.nan for x in range(len(df_summ_batter_pitch))]
|
613 |
+
|
614 |
+
df_summ_batter_pitch['shadow_zone_swing_percent'] = [df_summ_batter_pitch.shadow_swing[x]/df_summ_batter_pitch.shadow[x] if df_summ_batter_pitch.shadow[x] != 0 else np.nan for x in range(len(df_summ_batter_pitch))]
|
615 |
+
|
616 |
+
df_summ_batter_pitch['chase_zone_swing_percent'] = [df_summ_batter_pitch.chase_swing[x]/df_summ_batter_pitch.chase[x] if df_summ_batter_pitch.chase[x] != 0 else np.nan for x in range(len(df_summ_batter_pitch))]
|
617 |
+
|
618 |
+
df_summ_batter_pitch['waste_zone_swing_percent'] = [df_summ_batter_pitch.waste_swing[x]/df_summ_batter_pitch.waste[x] if df_summ_batter_pitch.waste[x] != 0 else np.nan for x in range(len(df_summ_batter_pitch))]
|
619 |
+
|
620 |
+
|
621 |
+
|
622 |
+
|
623 |
+
df_summ_batter_pitch['xwoba_percent'] = [df_summ_batter_pitch.xwoba[x]/df_summ_batter_pitch.xwoba_codes[x] if df_summ_batter_pitch.xwoba_codes[x] != 0 else np.nan for x in range(len(df_summ_batter_pitch))]
|
624 |
+
df_summ_batter_pitch['xwoba_percent_contact'] = [df_summ_batter_pitch.xwoba_contact[x]/df_summ_batter_pitch.bip[x] if df_summ_batter_pitch.bip[x] != 0 else np.nan for x in range(len(df_summ_batter_pitch))]
|
625 |
+
|
626 |
+
|
627 |
+
|
628 |
+
|
629 |
+
df_summ_batter_pitch['bip'] = df_summ_batter_pitch['bip'].fillna(0)
|
630 |
+
|
631 |
return df_summ_batter_pitch
|