chart_races / app.py
nesticot's picture
Update app.py
eb57836 verified
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure
from matplotlib.offsetbox import OffsetImage, AnnotationBbox
from scipy import stats
import pickle
import json
from datetime import timedelta
from urllib.request import urlopen
from datetime import date
from datetime import datetime
import pytz
import json
from matplotlib.ticker import MaxNLocator
import matplotlib.font_manager as font_manager
import numpy as np
from shiny import App, Inputs, Outputs, Session, reactive, render, req, ui
# team_games_df = pd.read_csv('data/team_games_all.csv',index_col=[0])
# player_games_df = pd.read_csv('data/player_games_cards.csv',index_col=[0]).sort_values(by='date').reset_index(drop=True)
team_abv_nst = pd.read_csv('data/team_abv_nst.csv')
#player_games_df = player_games_df.loc[:, ~player_games_df.columns.str.contains('^Unnamed')]
#team_abv = pd.read_csv('team_abv.csv')
#team_games_df = team_games_df.merge(right=team_abv,left_on='team',right_on='team_name',how='left').drop(columns='team_name')
team_abv = pd.read_csv('data/team_abv.csv')
import pickle
from datetime import timedelta
# # Loop over the counter and format the API call
# r = requests.get('https://statsapi.web.nhl.com/api/v1/schedule?startDate=2022-10-01&endDate=2023-06-01')
# schedule = r.json()
# schedule = json.loads(urlopen('https://statsapi.web.nhl.com/api/v1/schedule?startDate=2023-10-07&endDate=2024-04-19').read())
# def flatten(t):
# return [item for sublist in t for item in sublist]
# game_id = flatten([[x['gamePk'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
# game_type = flatten([[x['gameType'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
# game_date = flatten([[(pd.to_datetime(x['gameDate']) - timedelta(hours=8)) for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
# game_final = flatten([[x['status']['detailedState'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
# game_home = flatten([[x['teams']['home']['team']['name'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
# game_away = flatten([[x['teams']['away']['team']['name'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
# schedule_df = pd.DataFrame(data={'game_id': game_id, 'game_type':game_type,'game_date' : game_date, 'game_home' : game_home, 'game_away' : game_away,'status' : game_final})
# schedule_df = schedule_df[schedule_df.game_type == 'R'].reset_index(drop=True)
# schedule_df = schedule_df[schedule_df.status != 'Postponed']
# schedule_df = schedule_df.replace('Montréal Canadiens','Montreal Canadiens')
schedule = pd.read_csv('2024_schedule_href.csv')
#schedule = pd.read_html('https://www.hockey-reference.com/leagues/NHL_2024_games.html')[0]
#schedule.to_csv('schedule/schedule_'+str(date.today())+'.csv')
#schedule = pd.read_csv('schedule/schedule_'+str(date.today())+'.csv')
schedule = schedule.replace('St Louis Blues','St. Louis Blues')
schedule_df = schedule.merge(right=team_abv,left_on='Visitor',right_on='team_name',how='inner',suffixes=['','_away'])
schedule_df = schedule_df.merge(right=team_abv,left_on='Home',right_on='team_name',how='inner',suffixes=['','_home'])
schedule_df = schedule_df.rename(columns={'Visitor':'game_away','Home':'game_home','Date':'game_date'})
schedule_df_merge = schedule_df.merge(right=team_abv,left_on='game_home',right_on='team_name',how='left')
schedule_df_merge = schedule_df_merge.merge(right=team_abv,left_on='game_away',right_on='team_name',how='left')
schedule_df_merge = schedule_df_merge.drop(columns={'team_name_x','team_name_y'})
schedule_df_merge = schedule_df_merge.rename(columns={'team_abv_x' : 'team_abv_home','team_abv_y' : 'team_abv_away'})
schedule_df_merge = schedule_df_merge.loc[:,~schedule_df_merge.columns.duplicated()].copy()
#schedule_df_merge.game_date = pd.to_datetime(schedule_df_merge['game_date']).dt.tz_convert(tz='US/Eastern').dt.date
# schedule_df_merge = schedule_df_merge.set_index(pd.DatetimeIndex(schedule_df_merge.game_date).strftime('%Y-%m-%d'))
schedule_df_merge.index = pd.to_datetime(schedule_df_merge.game_date)
schedule_df_merge = schedule_df_merge.drop(columns='game_date')
#schedule_df_merge.index = schedule_df_merge.index.tz_convert('US/Pacific')
schedule_df_merge.index = schedule_df_merge.index.date
schedule_df_merge = schedule_df_merge.sort_index()
schedule_df_merge = schedule_df_merge[schedule_df_merge.index <= date(2024,5,1)]
schedule_df_merge_final = schedule_df_merge[schedule_df_merge.index<date.today()]
schedule_ccount_df = pd.DataFrame(data={'date':list(schedule_df_merge_final.index)*2,'team':list(schedule_df_merge_final.team_abv_away)+list(schedule_df_merge_final.team_abv_home)}).sort_values(by='date').reset_index(drop=True)
schedule_ccount_df['team_game'] = schedule_ccount_df.groupby('team').cumcount()+1
schedule_ccount_df.date = pd.to_datetime(schedule_ccount_df.date)
today = pd.to_datetime(datetime.now(pytz.timezone('US/Pacific')).strftime('%Y-%m-%d'))
team_schdule = schedule_df_merge[(schedule_df_merge['team_abv_home']=='EDM')|(schedule_df_merge['team_abv_away']=='EDM')]
team_schdule_live = team_schdule[team_schdule.index <= today]
team_schdule_live.head()
team_games_df = pd.read_csv('data/team_games_all.csv',index_col=[0])
player_games_df = pd.read_csv('data/player_games_cards.csv',index_col=[0]).sort_values(by='date').reset_index(drop=True)
team_abv_df = pd.read_csv('data/team_abv.csv')
player_games_df = player_games_df.loc[:, ~player_games_df.columns.str.contains('^Unnamed')]
team_games_df = team_games_df.merge(right=team_abv_df,left_on='team',right_on='team_name',how='left').drop(columns='team_name')
player_games_df = player_games_df.drop_duplicates(subset=['player_id','date'],keep='last').reset_index(drop=True)
player_games_df.date = pd.to_datetime(player_games_df.date)
team_games_df['date'] = pd.to_datetime(team_games_df['date']).dt.date
team_games_df = team_games_df[team_games_df['date']<date.today()]
#schedule_df_merge_final = schedule_df_merge[schedule_df_merge['status']=='Final']
schedule_ccount_df = pd.DataFrame(data={'date':list(schedule_df_merge_final.index)*2,'team':list(schedule_df_merge_final.team_abv_away)+list(schedule_df_merge_final.team_abv_home)}).sort_values(by='date').reset_index(drop=True)
schedule_ccount_df['team_game'] = schedule_ccount_df.groupby('team').cumcount()+1
schedule_ccount_df.date = pd.to_datetime(schedule_ccount_df.date)
team_games_df['team_game'] = team_games_df.groupby('team').cumcount()+1
player_games_df = player_games_df.merge(right=schedule_ccount_df,left_on=['Team','date'],right_on=['team','date'],how='left')
player_games_df['player_game'] = player_games_df.groupby('player_id').cumcount()+1
date_range_list = pd.date_range(start=player_games_df.date.min()+timedelta(days=6),end=player_games_df.date.max())
team_abv_nst_dict = {'All':''} | team_abv_nst.set_index('team_abv')['team_name'].to_dict()
position_dict = {'All':'','F':'Forwards','D':'Defense'}
player_games_df.player_id = player_games_df.player_id.astype(int)
player_games_df = player_games_df.rename(columns={'Total Points_pp':'PP Points'})
stat_input_list = ['TOI', 'Goals', 'Total Assists',
'First Assists', 'Total Points', 'PP Points','Shots', 'Hits',
'Shots Blocked']
df_cum_stat_total = player_games_df.groupby(['player_id','Player','Position']).agg(
GP = ('GP','count'),
Total_Points = ('Total Points','sum')
).reset_index()
df_all_sort = df_cum_stat_total.copy()
stat_pick = 'Total_Points'
count=11
not_position = ''
team = ''
df_all_sort = df_all_sort[(df_all_sort['Position']!=not_position)]
df_all_sort[stat_pick+' per game'] = df_all_sort[stat_pick]/df_all_sort['GP']
df_all_sort[stat_pick+' Rank'] = df_all_sort[stat_pick].rank(ascending=False,method='min')
df_all_sort = df_all_sort[df_all_sort[stat_pick+' Rank']<=count]
df_all_sort[stat_pick+' per game Rank'] = df_all_sort[stat_pick+' per game'].rank(ascending=False,method='min')
# #df_all_sort.sort_values(by=[stat_pick,stat_pick+' per game','Total Points'],ascending = (False, False,False))
df_all_sort_list = df_all_sort[df_all_sort[stat_pick+' Rank']<max(df_all_sort[stat_pick+' Rank'])].sort_values(by=[stat_pick,stat_pick+' per game','Total_Points'],ascending = (False, False,False))
# # df_all_sort = df_all_sort.sort_values(by=[stat_pick,stat_pick+' per game','Total Points'],ascending = (False, False,False))[(df_all_sort['Position']!=not_position)&(df_all_sort['Team']!=team)].head(count)['Player']
temp_df = df_all_sort[df_all_sort[stat_pick+' Rank']==max(df_all_sort[stat_pick+' Rank'])]#[stat_pick+' per game Rank'].rank().sort_values(ascending=True).reset_index(drop=True)[count-len(df_all_sort_list)-1]
temp_df['temp'] = temp_df[stat_pick+' per game Rank'].rank()#.sort_values(ascending=True)#.reset_index(drop=True)
temp_df = temp_df.sort_values(by='temp',ascending=True)#.reset_index(drop=True)
temp = temp_df[temp_df['temp']<=(count-len(df_all_sort_list))]
players_list = list(pd.concat([df_all_sort_list,temp]).reset_index(drop=True)['player_id'])
rookie_df = pd.read_csv('data/player_rookies.csv',index_col=[0])
rookie_list = rookie_df.player_id.values
skater_dict = df_cum_stat_total.sort_values(by=['Total_Points','GP'],ascending=[False,True]).drop_duplicates(subset='player_id').set_index('player_id')#.sort_values(by='Player')
#skater_dict['skater_team'] = skater_dict.Player + ' - ' + skater_dict.Team
skater_dict = skater_dict['Player'].to_dict()
# players_list = list(df_all_sort['Player'])
print(players_list)
from shiny import ui, render, App
from shiny import App, reactive, ui
from shiny.ui import h2, tags
import matplotlib.image as mpimg
# app_ui = ui.page_fluid(
# # ui.output_plot("plot"),
# #ui.h2('MLB Batter Launch Angle vs Exit Velocity'),
# ui.layout_sidebar(
# ui.panel_sidebar(
# ui.input_select("id", "Select Batter",batter_dict),
# ui.input_select("plot_id", "Select Plot",{'scatter':'Scatter Plot','dist':'Distribution Plot'})))
# ,
# ui.panel_main(ui.output_plot("plot",height = "750px",width="1250px")),
# #ui.download_button('test','Download'),
# )
#import shinyswatch
app_ui = ui.page_fluid(
#shinyswatch.theme.cosmo(),
ui.layout_sidebar(
# Available themes:
# cerulean, cosmo, cyborg, darkly, flatly, journal, litera, lumen, lux,
# materia, minty, morph, pulse, quartz, sandstone, simplex, sketchy, slate,
# solar, spacelab, superhero, united, vapor, yeti, zephyr
ui.panel_sidebar(
ui.input_select("id", "Select Skater (max. 10 Skaters)",skater_dict,width=1,selected=list(players_list[0:10]),selectize=True,multiple=True),
ui.input_select("stat", "Stat Input",stat_input_list,width=1,size=1,selectize=False,selected='Total Points'),
ui.input_select("team_select", "Team",team_abv_nst_dict,width=1,size=1,selectize=False,selected='All'),
ui.input_select("position_select", "Position",position_dict,width=1,size=1,selectize=False,selected='All'),
ui.input_date("date", "Date input",value = datetime.today().date() - timedelta(days=1),min='2023-10-10', max=datetime.today().date() - timedelta(days=1)),
ui.input_switch("rookie_switch", "Rookies Only"),
ui.input_action_button("go", "Generate",class_="btn-primary"),
ui.output_table("result"),
width=3),
ui.panel_main(
ui.navset_tab(
ui.nav("Chart Races",
ui.panel_main(
ui.output_plot("plot",height = "1200px",width="1200px")),
)
))))
# ui.row(
# ui.column(
# 3,
# ui.input_date("x", "Date input"),),
# ui.column(
# 1,
# ui.input_select("level_id", "Select Level",level_dict,width=1)),
# ui.column(
# 3,
# ui.input_select("stat_id", "Select Stat",plot_dict_small,width=1)),
# ui.column(
# 2,
# ui.input_numeric("n", "Rolling Window Size", value=50)),
# ),
# ui.output_table("result_batters")),
# ui.nav(
# "Pitchers",
# ui.row(
# ui.column(
# 3,
# ui.input_select("id_pitch", "Select Pitcher",pitcher_dict,width=1,selected=675911),
# ),
# ui.column(
# 1,
# ui.input_select("level_id_pitch", "Select Level",level_dict,width=1)),
# ui.column(
# 3,
# ui.input_select("stat_id_pitch", "Select Stat",plot_dict_small_pitch,width=1)),
# ui.column(
# 2,
# ui.input_numeric("n_pitch", "Rolling Window Size", value=50)),
# ),
# ui.output_table("result_pitchers")),
# )
# )
# )
#from urllib.request import Request, urlopen
# importing OpenCV(cv2) module
def server(input, output, session):
@reactive.Effect
def _():
team_select_list = [input.team_select()]
position_select_list = [input.position_select()]
if team_select_list[0] == 'All':
team_select_list = team_abv_nst.team_abv.unique()
if position_select_list[0] == 'All':
position_select_list = player_games_df.Position.unique()
elif position_select_list[0] == 'F':
position_select_list = player_games_df[player_games_df.Position != 'D'].Position.unique()
else:
position_select_list = ['D']
print(team_select_list)
if input.rookie_switch():
df_cum_stat_total = player_games_df[(player_games_df.date <= pd.to_datetime(input.date()))
&(player_games_df.player_id.isin(rookie_list))
&(player_games_df.Team.isin(team_select_list))
&(player_games_df.Position.isin(position_select_list))].groupby(['player_id','Player','Position']).agg(
GP = ('GP','count'),
Total_Points = (f'{input.stat()}','sum')
).reset_index()
else:
df_cum_stat_total = player_games_df[(player_games_df.date <= pd.to_datetime(input.date()))
&(player_games_df.Team.isin(team_select_list))
&(player_games_df.Position.isin(position_select_list))].groupby(['player_id','Player','Position']).agg(
GP = ('GP','count'),
Total_Points = (f'{input.stat()}','sum')
).reset_index()
df_all_sort = df_cum_stat_total.copy()
stat_pick = 'Total_Points'
count=6
not_position = ''
team = ''
df_all_sort = df_all_sort[(df_all_sort['Position']!=not_position)]
df_all_sort[stat_pick+' per game'] = df_all_sort[stat_pick]/df_all_sort['GP']
df_all_sort[stat_pick+' Rank'] = df_all_sort[stat_pick].rank(ascending=False,method='min')
df_all_sort = df_all_sort[df_all_sort[stat_pick+' Rank']<=count]
df_all_sort[stat_pick+' per game Rank'] = df_all_sort[stat_pick+' per game'].rank(ascending=False,method='min')
# #df_all_sort.sort_values(by=[stat_pick,stat_pick+' per game','Total Points'],ascending = (False, False,False))
df_all_sort_list = df_all_sort[df_all_sort[stat_pick+' Rank']<max(df_all_sort[stat_pick+' Rank'])].sort_values(by=[stat_pick,stat_pick+' per game','Total_Points'],ascending = (False, False,False))
# # df_all_sort = df_all_sort.sort_values(by=[stat_pick,stat_pick+' per game','Total Points'],ascending = (False, False,False))[(df_all_sort['Position']!=not_position)&(df_all_sort['Team']!=team)].head(count)['Player']
temp_df = df_all_sort[df_all_sort[stat_pick+' Rank']==max(df_all_sort[stat_pick+' Rank'])]#[stat_pick+' per game Rank'].rank().sort_values(ascending=True).reset_index(drop=True)[count-len(df_all_sort_list)-1]
temp_df['temp'] = temp_df[stat_pick+' per game Rank'].rank()#.sort_values(ascending=True)#.reset_index(drop=True)
temp_df = temp_df.sort_values(by='temp',ascending=True)#.reset_index(drop=True)
temp = temp_df[temp_df['temp']<=(count-len(df_all_sort_list))]
players_list_new = list(pd.concat([df_all_sort_list,temp]).reset_index(drop=True)['player_id'])
skater_dict = df_cum_stat_total.sort_values(by=['Total_Points','GP'],ascending=[False,True]).drop_duplicates(subset='player_id').set_index('player_id')#.sort_values(by='Player')
#skater_dict['skater_team'] = skater_dict.Player + ' - ' + skater_dict.Team
skater_dict = skater_dict['Player'].to_dict()
# players_list = list(df_all_sort['Player'])
ui.update_select(
"id",
label="Select Skater (max. 10 Skaters)",
choices=skater_dict,
selected=list(players_list_new[0:10]))
@output
@render.table
@reactive.event(input.go, ignore_none=False)
def result():
if input.rookie_switch():
return player_games_df[(player_games_df.date <= pd.to_datetime(input.date()))&(player_games_df.player_id.isin(rookie_list))].groupby(['player_id','Player','Position']).agg(
GP = ('GP','count'),
Stat = (f'{input.stat()}','sum')
).reset_index().sort_values(by=['Stat','GP'],ascending=[False,True]).reset_index(drop=True)
else:
return player_games_df[player_games_df.date <= pd.to_datetime(input.date())].groupby(['player_id','Player','Position']).agg(
GP = ('GP','count'),
Stat = (f'{input.stat()}','sum')
).reset_index().sort_values(by=['Stat','GP'],ascending=[False,True]).reset_index(drop=True)
@output
@render.plot(alt="A histogram")
@reactive.event(input.go, ignore_none=False)
def plot():
team_select_list = [input.team_select()]
position_select_list = [input.position_select()]
if team_select_list[0] == 'All':
team_select_title = 'NHL '
else:
team_select_title = f'{team_abv_nst_dict[team_select_list[0]]} '
if position_select_list[0] == 'All':
position_select_title = ''
elif position_select_list[0] == 'F':
position_select_title = 'Forwards '
else:
position_select_title = 'Defense '
rookie = ''
if input.rookie_switch():
rookie = 'Rookie '
i = 0
#rookie = ''
current_season = '2023'
start_season = '2024'
# player_lookup_list = ['Connor McDavid','David Pastrnak','Nathan MacKinnon']
type(input.id())
print(input.id())
player_lookup_list = list(input.id())[0:10]
stat = input.stat()
sns.set_theme(style="whitegrid", palette="pastel")
#print(type([input.date()))
date_range_list = [pd.to_datetime(input.date())]
for k in range(len(date_range_list)):
print(date_range_list[k])
stat = input.stat()
team_schedule_url_merge = []
max_games_player = []
max_games_team = []
max_stat = []
per_game = False
for i in range(0,len(player_lookup_list)):
team_schedule_url_merge.append(player_games_df[(player_games_df.player_id == int(player_lookup_list[i]))&(date_range_list[k] >= player_games_df.date)].reset_index(drop=True))
#print('touble',i, player_lookup_list[i],len(player_games_df[(player_games_df.player_id == player_lookup_list[i])]))
team_schedule_url_merge[i].index = team_schedule_url_merge[i].team_game
team_schedule_url_merge[i] = team_schedule_url_merge[i].reindex(np.arange(team_schedule_url_merge[i].team_game.min(), team_schedule_url_merge[i].team_game.max() + 1)).reset_index(drop=True)
#team_schedule_url_merge[0]['team_game'] = team_schedule_url_merge[0]['index']
#team_schedule_url_merge[0]['player_game'] =
#schedule_ccount_df[schedule_ccount_df['team'].isin(team_schedule_url_merge[0].Team.unique())].merge(right=team_schedule_url_merge[0],left_on=['date','team'],right_on=['date','Team'],how='left')
team_schedule_url_merge[i]['stat'] = team_schedule_url_merge[i][stat].cumsum()
#team_schedule_url_merge[i]['stat'] = team_schedule_url_merge[i][stat_pick]
team_schedule_url_merge[i] = team_schedule_url_merge[i].append(team_schedule_url_merge[i]).sort_index()
team_schedule_url_merge[i] = team_schedule_url_merge[i].append(team_schedule_url_merge[i].iloc[0]).sort_index().reset_index(drop=True)
team_schedule_url_merge[i]['team_game'][0] = 0
team_schedule_url_merge[i]['player_game'][0] = 0
team_schedule_url_merge[i]['stat'][0] = 0
for j in range(1,len(team_schedule_url_merge[i]),2):
team_schedule_url_merge[i]['player_game'][j] = team_schedule_url_merge[i]['player_game'][j]-1
team_schedule_url_merge[i]['team_game'][j] = team_schedule_url_merge[i]['team_game'][j]-1
team_schedule_url_merge[i]['stat'][j] = team_schedule_url_merge[i]['stat'][j] - team_schedule_url_merge[i][stat][j]
if len(team_schedule_url_merge[i]) >3:
if pd.isna(team_schedule_url_merge[i].iloc[3]['player_game']) and pd.isna(team_schedule_url_merge[i].iloc[1]['player_game']) == True:
team_schedule_url_merge[i]['player_game'][2] = np.nan
team_schedule_url_merge[i]['stat'][2] = np.nan
if len(team_schedule_url_merge[i]) >3:
if pd.isna(team_schedule_url_merge[i].iloc[len(team_schedule_url_merge[i])-1]['player_game']) == True:
team_schedule_url_merge[i]['stat'][len(team_schedule_url_merge[i])-1] = np.nanmax(team_schedule_url_merge[i]['stat'])
if not (team_schedule_url_merge[i]['team_game'].values[1] == team_schedule_url_merge[i]['player_game'].values[0]):
team_schedule_url_merge[i].loc[0,'team_game'] = np.nan
max_games_player.append(np.around(np.nanmax(team_schedule_url_merge[i]['player_game'])))
max_games_team.append(np.around(np.nanmax(team_schedule_url_merge[i]['team_game'])))
max_stat.append((np.around(np.nanmax(team_schedule_url_merge[i]['stat']))))
fig, ax = plt.subplots(figsize=(15,15))
cgfont = {'fontname':'Century Gothic'}
font = font_manager.FontProperties(family='Century Gothic',
style='normal', size=14)
ax.axhline(0,color='black',linestyle ="--",linewidth=2,alpha=1.0,label='Missed Games')
ax.axhline(0,color='black',linestyle ="-",linewidth=2,alpha=1.0)
if 'Total' in stat:
stat = stat.replace('Total ',"")
colour_scheme = ['#648FFF','#785EF0','#DC267F','#FE6100','#FFB000','#FAEF3B','#861318','#2ED3BC','#341BBF','#B37E2C']
for i in range(len(team_schedule_url_merge)):
sns.lineplot(team_schedule_url_merge[i].reset_index()['team_game'],team_schedule_url_merge[i].reset_index()['stat'],linewidth=3-i*.2,color=colour_scheme[i])
plt.plot(team_schedule_url_merge[i]['team_game'],team_schedule_url_merge[i]['stat'],color=ax.lines[i*2+2].get_color(),label=str(i+1)+'. '+team_schedule_url_merge[i]['Player'][0]+', '+str(int(max_stat[i]))+' '+stat+' in '+str(int(max(team_schedule_url_merge[i]['player_game'])))+' Games',linewidth=6)
ax.lines[i*2+2].set_linestyle("--")
fig.set_facecolor('#ffffff')
ax.set(xlim=(0,max([team_schedule_url_merge[x].team_game.max() for x in range(len(team_schedule_url_merge))])))
ax.set(ylim=(0,max([team_schedule_url_merge[x].stat.max() for x in range(len(team_schedule_url_merge))])))
ax.legend_.remove()
if per_game == False:
fig.suptitle(f'{rookie}{team_select_title}{position_select_title}{stat} Race',y=.98,fontsize=32,color='black',**cgfont)
ax.set_ylabel(stat,fontsize=20,color='black',**cgfont)
# else:
# fig.suptitle(stat+' Per Game, All Situations',y=.99,fontsize=48,color='black',**cgfont)
# ax.set_ylabel(stat+"/GP",fontsize=20,color='black',**cgfont)
ax.set_title(str(current_season)[0:4]+'-'+str(start_season)[-4:]+' Season',y=1.01,fontsize=18,color='black',**cgfont,x=0,ha='left')
ax.set_xlabel('Team Game',fontsize=20,color='black',**cgfont)
ax.tick_params(axis="x", labelsize=24,colors='black')
ax.set_facecolor('#ffffff')
ax.xaxis.set_major_locator(MaxNLocator(integer=True))
ax.tick_params(axis="y", labelsize=24,colors='black')
ax.yaxis.set_major_locator(MaxNLocator(integer=True))
fig.text(x=0.025,y=0.01,s="Created By: @TJStats",color='black', fontsize=20, horizontalalignment='left',**cgfont)
fig.text(x=0.975,y=0.01,s="Data: Natural Stat Trick",color='black', fontsize=20, horizontalalignment='right',**cgfont)
fig.text(x=.975,y=0.92,s='Date: '+input.date().strftime('%B %d, %Y'),color='black', fontsize=18, horizontalalignment='right',**cgfont)
ax.legend(prop=font,bbox_to_anchor=(0.01, 0.99),loc='upper left',framealpha=1,frameon=True)
plt.tight_layout()
#fig.savefig('gif_race/'+stat+rookie+str(date_range_list[k].date())+'.png', facecolor=fig.get_facecolor(), edgecolor='none',bbox_inches='tight',dpi=100)
#plt.close()
#fig.legend(prop=font,loc='best',framealpha=1,frameon=True)
app = App(app_ui, server)