Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -31,24 +31,30 @@ from datetime import timedelta
|
|
31 |
# r = requests.get('https://statsapi.web.nhl.com/api/v1/schedule?startDate=2022-10-01&endDate=2023-06-01')
|
32 |
# schedule = r.json()
|
33 |
|
34 |
-
schedule = json.loads(urlopen('https://statsapi.web.nhl.com/api/v1/schedule?startDate=2023-10-07&endDate=2024-04-19').read())
|
35 |
-
|
36 |
-
def flatten(t):
|
37 |
-
|
38 |
-
|
39 |
-
game_id = flatten([[x['gamePk'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
|
40 |
-
game_type = flatten([[x['gameType'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
|
41 |
-
game_date = flatten([[(pd.to_datetime(x['gameDate']) - timedelta(hours=8)) for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
|
42 |
-
game_final = flatten([[x['status']['detailedState'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
|
43 |
-
game_home = flatten([[x['teams']['home']['team']['name'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
|
44 |
-
game_away = flatten([[x['teams']['away']['team']['name'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
|
45 |
-
|
46 |
-
schedule_df = pd.DataFrame(data={'game_id': game_id, 'game_type':game_type,'game_date' : game_date, 'game_home' : game_home, 'game_away' : game_away,'status' : game_final})
|
47 |
-
schedule_df = schedule_df[schedule_df.game_type == 'R'].reset_index(drop=True)
|
48 |
-
schedule_df = schedule_df[schedule_df.status != 'Postponed']
|
49 |
-
schedule_df = schedule_df.replace('Montréal Canadiens','Montreal Canadiens')
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
schedule_df_merge = schedule_df.merge(right=team_abv,left_on='game_home',right_on='team_name',how='left')
|
54 |
schedule_df_merge = schedule_df_merge.merge(right=team_abv,left_on='game_away',right_on='team_name',how='left')
|
|
|
31 |
# r = requests.get('https://statsapi.web.nhl.com/api/v1/schedule?startDate=2022-10-01&endDate=2023-06-01')
|
32 |
# schedule = r.json()
|
33 |
|
34 |
+
# schedule = json.loads(urlopen('https://statsapi.web.nhl.com/api/v1/schedule?startDate=2023-10-07&endDate=2024-04-19').read())
|
35 |
+
|
36 |
+
# def flatten(t):
|
37 |
+
# return [item for sublist in t for item in sublist]
|
38 |
+
|
39 |
+
# game_id = flatten([[x['gamePk'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
|
40 |
+
# game_type = flatten([[x['gameType'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
|
41 |
+
# game_date = flatten([[(pd.to_datetime(x['gameDate']) - timedelta(hours=8)) for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
|
42 |
+
# game_final = flatten([[x['status']['detailedState'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
|
43 |
+
# game_home = flatten([[x['teams']['home']['team']['name'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
|
44 |
+
# game_away = flatten([[x['teams']['away']['team']['name'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
|
45 |
+
|
46 |
+
# schedule_df = pd.DataFrame(data={'game_id': game_id, 'game_type':game_type,'game_date' : game_date, 'game_home' : game_home, 'game_away' : game_away,'status' : game_final})
|
47 |
+
# schedule_df = schedule_df[schedule_df.game_type == 'R'].reset_index(drop=True)
|
48 |
+
# schedule_df = schedule_df[schedule_df.status != 'Postponed']
|
49 |
+
# schedule_df = schedule_df.replace('Montréal Canadiens','Montreal Canadiens')
|
50 |
+
|
51 |
+
schedule = pd.read_html('https://www.hockey-reference.com/leagues/NHL_2024_games.html')[0]
|
52 |
+
#schedule.to_csv('schedule/schedule_'+str(date.today())+'.csv')
|
53 |
+
#schedule = pd.read_csv('schedule/schedule_'+str(date.today())+'.csv')
|
54 |
+
schedule = schedule.replace('St Louis Blues','St. Louis Blues')
|
55 |
+
|
56 |
+
schedule_df = schedule.merge(right=team_abv,left_on='Visitor',right_on='team_name',how='inner',suffixes=['','_away'])
|
57 |
+
schedule_df = schedule_df.merge(right=team_abv,left_on='Home',right_on='team_name',how='inner',suffixes=['','_home'])
|
58 |
|
59 |
schedule_df_merge = schedule_df.merge(right=team_abv,left_on='game_home',right_on='team_name',how='left')
|
60 |
schedule_df_merge = schedule_df_merge.merge(right=team_abv,left_on='game_away',right_on='team_name',how='left')
|