Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -783,18 +783,20 @@ def server(input, output, session):
|
|
783 |
df_dated_score_group[df_dated_score_group.columns[1:]] = df_dated_score_group[df_dated_score_group.columns[1:]].divide(df_dated_score_group.GP,axis=0)
|
784 |
df_dated_score_group['PP_percent'] = df_dated_score_group.PP_toi / df_dated_score_group.team_pp
|
785 |
df_dated_score_group = df_dated_score_group.reset_index()
|
|
|
786 |
df_dated_score_group = df_dated_score_group[(df_dated_score_group.Team.isin(team_top))&(df_dated_score_group.percent_owned <= .50 )]
|
787 |
df_dated_score_group['TOI'] = ["%d:%02d" % (int(x),(x*60)%60) for x in df_dated_score_group['TOI'].astype(float)]
|
788 |
df_dated_score_group_table = df_dated_score_group[['Player','Team' ,'position', 'percent_owned', 'GP', 'TOI',
|
789 |
-
'Goals', 'ixG', 'Assists', 'Points', 'Shots', 'PP_Points', 'PP_percent']].sort_values(['Points','PP_percent','Goals','Shots'],ascending=False)
|
790 |
|
791 |
df_dated_score_group_table.columns = ['Player','Team' ,'Position', 'Roster%', 'GP', 'TOI/GP',
|
792 |
-
'Goals/GP', 'ixG/GP','Assists/GP', 'Points/GP', 'Shots/GP', 'PPP/GP', 'PP%']
|
793 |
|
794 |
|
795 |
|
796 |
-
return df_dated_score_group_table[df_dated_score_group_table.Position != 'D'].head(input.max_head()).style.background_gradient(
|
797 |
-
|
|
|
798 |
'selector': 'caption',
|
799 |
'props': [
|
800 |
('color', ''),
|
@@ -919,15 +921,20 @@ def server(input, output, session):
|
|
919 |
df_dated_score_group[df_dated_score_group.columns[1:]] = df_dated_score_group[df_dated_score_group.columns[1:]].divide(df_dated_score_group.GP,axis=0)
|
920 |
df_dated_score_group['PP_percent'] = df_dated_score_group.PP_toi / df_dated_score_group.team_pp
|
921 |
df_dated_score_group = df_dated_score_group.reset_index()
|
|
|
922 |
df_dated_score_group = df_dated_score_group[(df_dated_score_group.Team.isin(team_top))&(df_dated_score_group.percent_owned <= .50 )]
|
923 |
df_dated_score_group['TOI'] = ["%d:%02d" % (int(x),(x*60)%60) for x in df_dated_score_group['TOI'].astype(float)]
|
924 |
df_dated_score_group_table = df_dated_score_group[['Player','Team' ,'position', 'percent_owned', 'GP', 'TOI',
|
925 |
-
'Goals', 'ixG', 'Assists', 'Points', 'Shots', 'PP_Points', 'PP_percent']].sort_values(['Points','PP_percent','Goals','Shots'],ascending=False)
|
926 |
|
927 |
df_dated_score_group_table.columns = ['Player','Team' ,'Position', 'Roster%', 'GP', 'TOI/GP',
|
928 |
-
'Goals/GP', 'ixG/GP','Assists/GP', 'Points/GP', 'Shots/GP', 'PPP/GP', 'PP%']
|
929 |
|
930 |
-
return df_dated_score_group_table[df_dated_score_group_table.Position == 'D'].head(input.max_head())
|
|
|
|
|
|
|
|
|
931 |
.set_table_styles([{
|
932 |
'selector': 'caption',
|
933 |
'props': [
|
@@ -1051,18 +1058,24 @@ def server(input, output, session):
|
|
1051 |
df_dated_bangers_group[df_dated_bangers_group.columns[1:]] = df_dated_bangers_group[df_dated_bangers_group.columns[1:]].divide(df_dated_bangers_group.GP,axis=0)
|
1052 |
#df_dated_bangers_group['PP_percent'] = df_dated_bangers_group.PP_toi / df_dated_bangers_group.team_pp
|
1053 |
df_dated_bangers_group = df_dated_bangers_group.reset_index()
|
|
|
1054 |
df_dated_bangers_group = df_dated_bangers_group[(df_dated_bangers_group.Team.isin(team_top))&(df_dated_bangers_group.percent_owned <= .50 )]
|
1055 |
df_dated_bangers_group['TOI'] = ["%d:%02d" % (int(x),(x*60)%60) for x in df_dated_bangers_group['TOI'].astype(float)]
|
1056 |
df_dated_bangers_group_table = df_dated_bangers_group[['Player','Team' ,'position', 'percent_owned', 'GP', 'TOI',
|
1057 |
-
'Goals', 'Assists', 'Points', 'Shots', 'Hits', 'Blocks','S_H_B']].sort_values(['S_H_B','Shots','Hits','Blocks','Points'],ascending=False)
|
1058 |
|
1059 |
df_dated_bangers_group_table.columns = ['Player','Team' ,'Position', 'Roster%', 'GP', 'TOI/GP',
|
1060 |
-
'Goals/GP', 'Assists/GP', 'Points/GP', 'Shots/GP', 'Hits/GP', 'Blocks/GP','S+H+B/GP']
|
1061 |
|
1062 |
#df_dated_bangers_group_table.head(15)
|
1063 |
|
1064 |
-
return df_dated_bangers_group_table[df_dated_bangers_group_table.Position != 'D']
|
1065 |
-
|
|
|
|
|
|
|
|
|
|
|
1066 |
'selector': 'caption',
|
1067 |
'props': [
|
1068 |
('color', ''),
|
@@ -1185,18 +1198,24 @@ def server(input, output, session):
|
|
1185 |
df_dated_bangers_group[df_dated_bangers_group.columns[1:]] = df_dated_bangers_group[df_dated_bangers_group.columns[1:]].divide(df_dated_bangers_group.GP,axis=0)
|
1186 |
#df_dated_bangers_group['PP_percent'] = df_dated_bangers_group.PP_toi / df_dated_bangers_group.team_pp
|
1187 |
df_dated_bangers_group = df_dated_bangers_group.reset_index()
|
|
|
1188 |
df_dated_bangers_group = df_dated_bangers_group[(df_dated_bangers_group.Team.isin(team_top))&(df_dated_bangers_group.percent_owned <= .50 )]
|
1189 |
df_dated_bangers_group['TOI'] = ["%d:%02d" % (int(x),(x*60)%60) for x in df_dated_bangers_group['TOI'].astype(float)]
|
1190 |
df_dated_bangers_group_table = df_dated_bangers_group[['Player','Team' ,'position', 'percent_owned', 'GP', 'TOI',
|
1191 |
-
'Goals', 'Assists', 'Points', 'Shots', 'Hits', 'Blocks','S_H_B']].sort_values(['S_H_B','Shots','Hits','Blocks','Points'],ascending=False)
|
1192 |
|
1193 |
df_dated_bangers_group_table.columns = ['Player','Team' ,'Position', 'Roster%', 'GP', 'TOI/GP',
|
1194 |
-
'Goals/GP', 'Assists/GP', 'Points/GP', 'Shots/GP', 'Hits/GP', 'Blocks/GP','S+H+B/GP']
|
1195 |
|
1196 |
#df_dated_bangers_group_table.head(15)
|
1197 |
|
1198 |
-
return df_dated_bangers_group_table[df_dated_bangers_group_table.Position == 'D']
|
1199 |
-
|
|
|
|
|
|
|
|
|
|
|
1200 |
'selector': 'caption',
|
1201 |
'props': [
|
1202 |
('color', ''),
|
@@ -1214,9 +1233,6 @@ def server(input, output, session):
|
|
1214 |
**{'min-width':'50px'},subset = ((df_dated_bangers_group_table.columns[1:])),overwrite=False)
|
1215 |
|
1216 |
|
1217 |
-
|
1218 |
-
|
1219 |
-
|
1220 |
|
1221 |
|
1222 |
|
|
|
783 |
df_dated_score_group[df_dated_score_group.columns[1:]] = df_dated_score_group[df_dated_score_group.columns[1:]].divide(df_dated_score_group.GP,axis=0)
|
784 |
df_dated_score_group['PP_percent'] = df_dated_score_group.PP_toi / df_dated_score_group.team_pp
|
785 |
df_dated_score_group = df_dated_score_group.reset_index()
|
786 |
+
df_dated_score_group = df_dated_score_group.merge(test_df[['Team','Off-Night']],left_on=['Team'],right_on=['Team'])
|
787 |
df_dated_score_group = df_dated_score_group[(df_dated_score_group.Team.isin(team_top))&(df_dated_score_group.percent_owned <= .50 )]
|
788 |
df_dated_score_group['TOI'] = ["%d:%02d" % (int(x),(x*60)%60) for x in df_dated_score_group['TOI'].astype(float)]
|
789 |
df_dated_score_group_table = df_dated_score_group[['Player','Team' ,'position', 'percent_owned', 'GP', 'TOI',
|
790 |
+
'Goals', 'ixG', 'Assists', 'Points', 'Shots', 'PP_Points', 'PP_percent','Off-Night']].sort_values(['Points','Off-Night','PP_percent','Goals','Shots'],ascending=False)
|
791 |
|
792 |
df_dated_score_group_table.columns = ['Player','Team' ,'Position', 'Roster%', 'GP', 'TOI/GP',
|
793 |
+
'Goals/GP', 'ixG/GP','Assists/GP', 'Points/GP', 'Shots/GP', 'PPP/GP', 'PP%','Off-Night']
|
794 |
|
795 |
|
796 |
|
797 |
+
return df_dated_score_group_table[df_dated_score_group_table.Position != 'D'].head(input.max_head()).style.background_gradient(
|
798 |
+
cmap=cmap_off, subset=['Points/GP']).background_gradient(cmap=cmap_total, subset=['Roster%']).background_gradient(cmap=cmap_off, subset=['Off-Night'],vmin=0,vmax=df_dated_score_group_table['Off-Night'].max()).hide_index().set_properties(**{'Height': '12px'},**{'text-align': 'center'})\
|
799 |
+
.set_table_styles([{
|
800 |
'selector': 'caption',
|
801 |
'props': [
|
802 |
('color', ''),
|
|
|
921 |
df_dated_score_group[df_dated_score_group.columns[1:]] = df_dated_score_group[df_dated_score_group.columns[1:]].divide(df_dated_score_group.GP,axis=0)
|
922 |
df_dated_score_group['PP_percent'] = df_dated_score_group.PP_toi / df_dated_score_group.team_pp
|
923 |
df_dated_score_group = df_dated_score_group.reset_index()
|
924 |
+
df_dated_score_group = df_dated_score_group.merge(test_df[['Team','Off-Night']],left_on=['Team'],right_on=['Team'])
|
925 |
df_dated_score_group = df_dated_score_group[(df_dated_score_group.Team.isin(team_top))&(df_dated_score_group.percent_owned <= .50 )]
|
926 |
df_dated_score_group['TOI'] = ["%d:%02d" % (int(x),(x*60)%60) for x in df_dated_score_group['TOI'].astype(float)]
|
927 |
df_dated_score_group_table = df_dated_score_group[['Player','Team' ,'position', 'percent_owned', 'GP', 'TOI',
|
928 |
+
'Goals', 'ixG', 'Assists', 'Points', 'Shots', 'PP_Points', 'PP_percent','Off-Night']].sort_values(['Points','Off-Night','PP_percent','Goals','Shots'],ascending=False)
|
929 |
|
930 |
df_dated_score_group_table.columns = ['Player','Team' ,'Position', 'Roster%', 'GP', 'TOI/GP',
|
931 |
+
'Goals/GP', 'ixG/GP','Assists/GP', 'Points/GP', 'Shots/GP', 'PPP/GP', 'PP%','Off-Night']
|
932 |
|
933 |
+
return df_dated_score_group_table[df_dated_score_group_table.Position == 'D'].head(input.max_head()) \
|
934 |
+
.style.background_gradient(cmap=cmap_off, subset=['Points/GP']) \
|
935 |
+
.background_gradient(cmap=cmap_total, subset=['Roster%']) \
|
936 |
+
.background_gradient(cmap=cmap_off, subset=['Off-Night'],vmin=0,vmax=df_dated_score_group_table['Off-Night'].max()) \
|
937 |
+
.hide_index().set_properties(**{'Height': '12px'},**{'text-align': 'center'})\
|
938 |
.set_table_styles([{
|
939 |
'selector': 'caption',
|
940 |
'props': [
|
|
|
1058 |
df_dated_bangers_group[df_dated_bangers_group.columns[1:]] = df_dated_bangers_group[df_dated_bangers_group.columns[1:]].divide(df_dated_bangers_group.GP,axis=0)
|
1059 |
#df_dated_bangers_group['PP_percent'] = df_dated_bangers_group.PP_toi / df_dated_bangers_group.team_pp
|
1060 |
df_dated_bangers_group = df_dated_bangers_group.reset_index()
|
1061 |
+
df_dated_bangers_group = df_dated_bangers_group.merge(test_df[['Team','Off-Night']],left_on=['Team'],right_on=['Team'])
|
1062 |
df_dated_bangers_group = df_dated_bangers_group[(df_dated_bangers_group.Team.isin(team_top))&(df_dated_bangers_group.percent_owned <= .50 )]
|
1063 |
df_dated_bangers_group['TOI'] = ["%d:%02d" % (int(x),(x*60)%60) for x in df_dated_bangers_group['TOI'].astype(float)]
|
1064 |
df_dated_bangers_group_table = df_dated_bangers_group[['Player','Team' ,'position', 'percent_owned', 'GP', 'TOI',
|
1065 |
+
'Goals', 'Assists', 'Points', 'Shots', 'Hits', 'Blocks','S_H_B','Off-Night']].sort_values(['S_H_B','Off-Night','Shots','Hits','Blocks','Points'],ascending=False)
|
1066 |
|
1067 |
df_dated_bangers_group_table.columns = ['Player','Team' ,'Position', 'Roster%', 'GP', 'TOI/GP',
|
1068 |
+
'Goals/GP', 'Assists/GP', 'Points/GP', 'Shots/GP', 'Hits/GP', 'Blocks/GP','S+H+B/GP','Off-Night']
|
1069 |
|
1070 |
#df_dated_bangers_group_table.head(15)
|
1071 |
|
1072 |
+
return df_dated_bangers_group_table[df_dated_bangers_group_table.Position != 'D'] \
|
1073 |
+
.head(input.max_head()).style.background_gradient(cmap=cmap_off, subset=['S+H+B/GP'])\
|
1074 |
+
.background_gradient(cmap=cmap_total, subset=['Roster%'])\
|
1075 |
+
.background_gradient(cmap=cmap_off, subset=['Off-Night'],vmin=0,vmax=df_dated_bangers_group_table['Off-Night'].max())\
|
1076 |
+
.hide_index()\
|
1077 |
+
.set_properties(**{'Height': '12px'},**{'text-align': 'center'})\
|
1078 |
+
.set_table_styles([{
|
1079 |
'selector': 'caption',
|
1080 |
'props': [
|
1081 |
('color', ''),
|
|
|
1198 |
df_dated_bangers_group[df_dated_bangers_group.columns[1:]] = df_dated_bangers_group[df_dated_bangers_group.columns[1:]].divide(df_dated_bangers_group.GP,axis=0)
|
1199 |
#df_dated_bangers_group['PP_percent'] = df_dated_bangers_group.PP_toi / df_dated_bangers_group.team_pp
|
1200 |
df_dated_bangers_group = df_dated_bangers_group.reset_index()
|
1201 |
+
df_dated_bangers_group = df_dated_bangers_group.merge(test_df[['Team','Off-Night']],left_on=['Team'],right_on=['Team'])
|
1202 |
df_dated_bangers_group = df_dated_bangers_group[(df_dated_bangers_group.Team.isin(team_top))&(df_dated_bangers_group.percent_owned <= .50 )]
|
1203 |
df_dated_bangers_group['TOI'] = ["%d:%02d" % (int(x),(x*60)%60) for x in df_dated_bangers_group['TOI'].astype(float)]
|
1204 |
df_dated_bangers_group_table = df_dated_bangers_group[['Player','Team' ,'position', 'percent_owned', 'GP', 'TOI',
|
1205 |
+
'Goals', 'Assists', 'Points', 'Shots', 'Hits', 'Blocks','S_H_B','Off-Night']].sort_values(['S_H_B','Off-Night','Shots','Hits','Blocks','Points'],ascending=False)
|
1206 |
|
1207 |
df_dated_bangers_group_table.columns = ['Player','Team' ,'Position', 'Roster%', 'GP', 'TOI/GP',
|
1208 |
+
'Goals/GP', 'Assists/GP', 'Points/GP', 'Shots/GP', 'Hits/GP', 'Blocks/GP','S+H+B/GP','Off-Night']
|
1209 |
|
1210 |
#df_dated_bangers_group_table.head(15)
|
1211 |
|
1212 |
+
return df_dated_bangers_group_table[df_dated_bangers_group_table.Position == 'D']\
|
1213 |
+
.head(input.max_head()).style.background_gradient(cmap=cmap_off, subset=['S+H+B/GP'])\
|
1214 |
+
.background_gradient(cmap=cmap_total, subset=['Roster%'])\
|
1215 |
+
.background_gradient(cmap=cmap_off, subset=['Off-Night'],vmin=0,vmax=df_dated_bangers_group_table['Off-Night'].max())\
|
1216 |
+
.hide_index()\
|
1217 |
+
.set_properties(**{'Height': '12px'},**{'text-align': 'center'})\
|
1218 |
+
.set_table_styles([{
|
1219 |
'selector': 'caption',
|
1220 |
'props': [
|
1221 |
('color', ''),
|
|
|
1233 |
**{'min-width':'50px'},subset = ((df_dated_bangers_group_table.columns[1:])),overwrite=False)
|
1234 |
|
1235 |
|
|
|
|
|
|
|
1236 |
|
1237 |
|
1238 |
|