nesticot commited on
Commit
46f54e7
·
1 Parent(s): 9442906

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -17
app.py CHANGED
@@ -68,21 +68,31 @@ import requests
68
  import pandas as pd
69
 
70
  # # Loop over the counter and format the API call
71
- r = requests.get('https://statsapi.web.nhl.com/api/v1/schedule?startDate=2023-10-01&endDate=2024-06-01')
72
- schedule = r.json()
73
 
74
- def flatten(t):
75
- return [item for sublist in t for item in sublist]
76
 
77
- game_id = flatten([[x['gamePk'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
78
- game_date = flatten([[x['gameDate'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
79
- game_home = flatten([[x['teams']['home']['team']['name'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
80
- game_away = flatten([[x['teams']['away']['team']['name'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
81
 
82
- schedule_df = pd.DataFrame(data={'game_id': game_id, 'game_date' : game_date, 'game_home' : game_home, 'game_away' : game_away})
83
- schedule_df.game_date = pd.to_datetime(schedule_df['game_date']).dt.tz_convert(tz='US/Eastern').dt.date
84
- schedule_df = schedule_df.replace('Montréal Canadiens','Montreal Canadiens')
85
- schedule_df.head()
 
 
 
 
 
 
 
 
 
 
86
 
87
  team_abv = pd.read_csv('team_abv.csv')
88
  yahoo_weeks = pd.read_csv('yahoo_weeks.csv')
@@ -105,10 +115,11 @@ cmap_off = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FFFFFF","#
105
  cmap_back = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FFFFFF","#56B4E9"])
106
  cmap_sum = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FFFFFF","#F0E442"])
107
 
108
- schedule_df = schedule_df.merge(right=team_abv,left_on='game_away',right_on='team_name',how='inner',suffixes=['','_away'])
109
- schedule_df = schedule_df.merge(right=team_abv,left_on='game_home',right_on='team_name',how='inner',suffixes=['','_home'])
110
- schedule_df['away_sym'] = '@'
111
- schedule_df['home_sym'] = 'vs'
 
112
 
113
 
114
  #if not os.path.isfile('standings/standings_'+str(date.today())+'.csv'):
@@ -126,7 +137,8 @@ standings_df.Team = standings_df.Team.str.strip('*')
126
  standings_df = standings_df.merge(right=team_abv,left_on='Team',right_on='team_name')
127
 
128
  schedule_stack = pd.DataFrame()
129
- schedule_stack['date'] = pd.to_datetime(list(schedule_df['game_date'])+list(schedule_df['game_date']))
 
130
  schedule_stack['team'] = list(schedule_df['team_name'])+list(schedule_df['team_name_home'])
131
  schedule_stack['team_abv'] = list(schedule_df['team_abv'])+list(schedule_df['team_abv_home'])
132
  schedule_stack['symbol'] = list(schedule_df['away_sym'])+list(schedule_df['home_sym'])
 
68
  import pandas as pd
69
 
70
  # # Loop over the counter and format the API call
71
+ # r = requests.get('https://statsapi.web.nhl.com/api/v1/schedule?startDate=2023-10-01&endDate=2024-06-01')
72
+ # schedule = r.json()
73
 
74
+ # def flatten(t):
75
+ # return [item for sublist in t for item in sublist]
76
 
77
+ # game_id = flatten([[x['gamePk'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
78
+ # game_date = flatten([[x['gameDate'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
79
+ # game_home = flatten([[x['teams']['home']['team']['name'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
80
+ # game_away = flatten([[x['teams']['away']['team']['name'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
81
 
82
+ # schedule_df = pd.DataFrame(data={'game_id': game_id, 'game_date' : game_date, 'game_home' : game_home, 'game_away' : game_away})
83
+ # schedule_df.game_date = pd.to_datetime(schedule_df['game_date']).dt.tz_convert(tz='US/Eastern').dt.date
84
+ # schedule_df = schedule_df.replace('Montréal Canadiens','Montreal Canadiens')
85
+ # schedule_df.head()
86
+
87
+ schedule = pd.read_html('https://www.hockey-reference.com/leagues/NHL_2024_games.html')[0]
88
+ #schedule.to_csv('schedule/schedule_'+str(date.today())+'.csv')
89
+ #schedule = pd.read_csv('schedule/schedule_'+str(date.today())+'.csv')
90
+ schedule = schedule.replace('St Louis Blues','St. Louis Blues')
91
+
92
+ schedule_df = schedule.merge(right=team_abv,left_on='Visitor',right_on='team_name',how='inner',suffixes=['','_away'])
93
+ schedule_df = schedule_df.merge(right=team_abv,left_on='Home',right_on='team_name',how='inner',suffixes=['','_home'])
94
+ schedule_df['away_sym'] = '@'
95
+ schedule_df['home_sym'] = 'vs'
96
 
97
  team_abv = pd.read_csv('team_abv.csv')
98
  yahoo_weeks = pd.read_csv('yahoo_weeks.csv')
 
115
  cmap_back = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FFFFFF","#56B4E9"])
116
  cmap_sum = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FFFFFF","#F0E442"])
117
 
118
+ # schedule_df = schedule_df.merge(right=team_abv,left_on='game_away',right_on='team_name',how='inner',suffixes=['','_away'])
119
+ # schedule_df = schedule_df.merge(right=team_abv,left_on='game_home',right_on='team_name',how='inner',suffixes=['','_home'])
120
+ # schedule_df['away_sym'] = '@'
121
+ # schedule_df['home_sym'] = 'vs'
122
+
123
 
124
 
125
  #if not os.path.isfile('standings/standings_'+str(date.today())+'.csv'):
 
137
  standings_df = standings_df.merge(right=team_abv,left_on='Team',right_on='team_name')
138
 
139
  schedule_stack = pd.DataFrame()
140
+ # schedule_stack['date'] = pd.to_datetime(list(schedule_df['game_date'])+list(schedule_df['game_date']))
141
+ schedule_stack['date'] = pd.to_datetime(list(schedule_df['Date'])+list(schedule_df['Date']))
142
  schedule_stack['team'] = list(schedule_df['team_name'])+list(schedule_df['team_name_home'])
143
  schedule_stack['team_abv'] = list(schedule_df['team_abv'])+list(schedule_df['team_abv_home'])
144
  schedule_stack['symbol'] = list(schedule_df['away_sym'])+list(schedule_df['home_sym'])