nesticot commited on
Commit
46232ea
·
1 Parent(s): 31abae4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +33 -33
app.py CHANGED
@@ -84,39 +84,39 @@ co = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#56B4E9","#FFFFFF
84
 
85
 
86
 
87
- # try:
88
- # data_r = requests.get("https://pub-api-ro.fantasysports.yahoo.com/fantasy/v2/league/427.l.public;out=settings/players;position=ALL;start=0;count=3000;sort=rank_season;search=;out=percent_owned;out=auction_values,ranks;ranks=season;ranks_by_position=season;out=expert_ranks;expert_ranks.rank_type=projected_season_remaining/draft_analysis;cut_types=diamond;slices=last7days?format=json_f").json()
89
- # key_check = data_r['fantasy_content']['league']['players']
90
-
91
- # except KeyError:
92
- # data_r = requests.get("https://pub-api-ro.fantasysports.yahoo.com/fantasy/v2/league/427.l.public;out=settings/players;position=ALL;start=0;count=400;sort=rank_season;search=;out=percent_owned;out=auction_values,ranks;ranks=season;ranks_by_position=season;out=expert_ranks;expert_ranks.rank_type=projected_season_remaining/draft_analysis;cut_types=diamond;slices=last7days?format=json_f").json()
93
- # print('key_checked')
94
-
95
- # total_list = []
96
-
97
- # for x in data_r['fantasy_content']['league']['players']:
98
- # single_list = []
99
-
100
- # single_list.append(int(x['player']['player_id']))
101
- # single_list.append(int(x['player']['player_ranks'][0]['player_rank']['rank_value']))
102
- # single_list.append(x['player']['name']['full'])
103
- # single_list.append(x['player']['name']['first'])
104
- # single_list.append(x['player']['name']['last'])
105
- # single_list.append(x['player']['draft_analysis']['average_pick'])
106
- # single_list.append(x['player']['average_auction_cost'])
107
- # single_list.append(x['player']['display_position'])
108
- # single_list.append(x['player']['editorial_team_abbr'])
109
- # if 'value' in x['player']['percent_owned']:
110
- # single_list.append(x['player']['percent_owned']['value']/100)
111
- # else:
112
- # single_list.append(0)
113
- # total_list.append(single_list)
114
-
115
-
116
- # yahoo_df = pd.DataFrame(total_list,columns = ['player_id','rank_value','full','first','last','average_pick','average_auction_cost','display_position','editorial_team_abbr','percent_owned'])
117
-
118
- yahoo_df = pd.read_csv('df_2023_small.csv',index_col=[0],usecols=range(12))
119
- yahoo_df.columns = ['rank_value','player_id','full','first','last','average_pick', 'average_cost','display_position','projected_auction_value','editorial_team_abbr','percent_owned']
120
 
121
  yahoo_df_2 = yahoo_df.copy()
122
 
 
84
 
85
 
86
 
87
+ try:
88
+ data_r = requests.get("https://pub-api-ro.fantasysports.yahoo.com/fantasy/v2/league/427.l.public;out=settings/players;position=ALL;start=0;count=3000;sort=rank_season;search=;out=percent_owned;out=auction_values,ranks;ranks=season;ranks_by_position=season;out=expert_ranks;expert_ranks.rank_type=projected_season_remaining/draft_analysis;cut_types=diamond;slices=last7days?format=json_f").json()
89
+ key_check = data_r['fantasy_content']['league']['players']
90
+
91
+ except KeyError:
92
+ data_r = requests.get("https://pub-api-ro.fantasysports.yahoo.com/fantasy/v2/league/427.l.public;out=settings/players;position=ALL;start=0;count=400;sort=rank_season;search=;out=percent_owned;out=auction_values,ranks;ranks=season;ranks_by_position=season;out=expert_ranks;expert_ranks.rank_type=projected_season_remaining/draft_analysis;cut_types=diamond;slices=last7days?format=json_f").json()
93
+ print('key_checked')
94
+
95
+ total_list = []
96
+
97
+ for x in data_r['fantasy_content']['league']['players']:
98
+ single_list = []
99
+
100
+ single_list.append(int(x['player']['player_id']))
101
+ single_list.append(int(x['player']['player_ranks'][0]['player_rank']['rank_value']))
102
+ single_list.append(x['player']['name']['full'])
103
+ single_list.append(x['player']['name']['first'])
104
+ single_list.append(x['player']['name']['last'])
105
+ single_list.append(x['player']['draft_analysis']['average_pick'])
106
+ single_list.append(x['player']['average_auction_cost'])
107
+ single_list.append(x['player']['display_position'])
108
+ single_list.append(x['player']['editorial_team_abbr'])
109
+ if 'value' in x['player']['percent_owned']:
110
+ single_list.append(x['player']['percent_owned']['value']/100)
111
+ else:
112
+ single_list.append(0)
113
+ total_list.append(single_list)
114
+
115
+
116
+ yahoo_df = pd.DataFrame(total_list,columns = ['player_id','rank_value','full','first','last','average_pick','average_auction_cost','display_position','editorial_team_abbr','percent_owned'])
117
+
118
+ # yahoo_df = pd.read_csv('df_2023_small.csv',index_col=[0],usecols=range(12))
119
+ # yahoo_df.columns = ['rank_value','player_id','full','first','last','average_pick', 'average_cost','display_position','projected_auction_value','editorial_team_abbr','percent_owned']
120
 
121
  yahoo_df_2 = yahoo_df.copy()
122