ai / app1.py
netman19731's picture
Rename app.py to app1.py
c9586ba verified
raw
history blame
5.04 kB
from langchain_openai.chat_models import ChatOpenAI
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain.tools.render import format_tool_to_openai_function
from langgraph.prebuilt import ToolExecutor,ToolInvocation
from typing import TypedDict, Annotated, Sequence
import operator
from langchain_core.messages import BaseMessage,FunctionMessage,HumanMessage
from langchain.tools import ShellTool
import json
import os
import gradio as gr
os.environ["LANGCHAIN_TRACING_V2"] ="True"
os.environ["LANGCHAIN_API_KEY"]="ls__54e16f70b2b0455aad0f2cbf47777d30"
os.environ["OPENAI_API_KEY"]="20a79668d6113e99b35fcd541c65bfeaec497b8262c111bd328ef5f1ad8c6335"
# os.environ["OPENAI_API_KEY"]="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"
os.environ["LANGCHAIN_ENDPOINT"]="https://api.smith.langchain.com"
os.environ["LANGCHAIN_PROJECT"]="default"
os.environ['TAVILY_API_KEY'] = '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'
class AgentState(TypedDict):
messages: Annotated[Sequence[BaseMessage], operator.add]
model = ChatOpenAI(model="gpt-3.5-turbo-1106",api_key="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")
shell_tool = ShellTool()
tools = [TavilySearchResults(max_results=1),shell_tool]
functions = [format_tool_to_openai_function(t) for t in tools]
model = model.bind_functions(functions)
tool_executor = ToolExecutor(tools)
# Define the function that determines whether to continue or not
def should_continue(state):
messages = state['messages']
last_message = messages[-1]
# If there is no function call, then we finish
if "function_call" not in last_message.additional_kwargs:
return "end"
# Otherwise if there is, we continue
else:
return "continue"
# Define the function that calls the model
def call_model(state):
messages = state['messages']
response = model.invoke(messages)
# We return a list, because this will get added to the existing list
return {"messages": [response]}
# Define the function to execute tools
def call_tool(state):
messages = state['messages']
# Based on the continue condition
# we know the last message involves a function call
last_message = messages[-1]
# We construct an ToolInvocation from the function_call
action = ToolInvocation(
tool=last_message.additional_kwargs["function_call"]["name"],
tool_input=json.loads(last_message.additional_kwargs["function_call"]["arguments"]),
)
# We call the tool_executor and get back a response
response = tool_executor.invoke(action)
# We use the response to create a FunctionMessage
function_message = FunctionMessage(content=str(response), name=action.tool)
# We return a list, because this will get added to the existing list
return {"messages": [function_message]}
from langgraph.graph import StateGraph, END
# Define a new graph
workflow = StateGraph(AgentState)
# Define the two nodes we will cycle between
workflow.add_node("agent", call_model)
workflow.add_node("action", call_tool)
# Set the entrypoint as `agent`
# This means that this node is the first one called
workflow.set_entry_point("agent")
# We now add a conditional edge
workflow.add_conditional_edges(
# First, we define the start node. We use `agent`.
# This means these are the edges taken after the `agent` node is called.
"agent",
# Next, we pass in the function that will determine which node is called next.
should_continue,
# Finally we pass in a mapping.
# The keys are strings, and the values are other nodes.
# END is a special node marking that the graph should finish.
# What will happen is we will call `should_continue`, and then the output of that
# will be matched against the keys in this mapping.
# Based on which one it matches, that node will then be called.
{
# If `tools`, then we call the tool node.
"continue": "action",
# Otherwise we finish.
"end": END
}
)
# We now add a normal edge from `tools` to `agent`.
# This means that after `tools` is called, `agent` node is called next.
workflow.add_edge('action', 'agent')
# Finally, we compile it!
# This compiles it into a LangChain Runnable,
# meaning you can use it as you would any other runnable
app = workflow.compile()
# inputs = {"messages": [HumanMessage(content="查询你的cast命令版本")]}
# app.invoke(inputs)
async def predict(question):
que={"messages": [HumanMessage(content=question)]}
res=app.invoke(que)
if res:
return(res["messages"][-1].content)
else:print("不好意思,出了一个小问题,请联系我的微信:13603634456")
gr.Interface(
predict,inputs="textbox",
outputs="textbox",
title="定制版AI专家BOT-0.1版",
description="这是一个定制版的AI专家BOT,你可以通过输入问题,让AI为你回答。\n目前提供三个示例工具:\n1.bash命令行执行工具,可以将人类语言转化为bash命令,然后执行。\n2.搜索引擎").launch()