File size: 38,195 Bytes
9ba9778
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
900b395
9ba9778
30ec2d1
 
 
 
 
 
 
 
9ba9778
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62c13f1
9ba9778
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
900b395
9ba9778
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
028b044
9ba9778
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
028b044
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
import torch, os, traceback, sys, warnings, shutil, numpy as np
import gradio as gr
import librosa
import asyncio
import rarfile
import edge_tts
import yt_dlp
import ffmpeg
import gdown
import subprocess
import wave
import soundfile as sf
from scipy.io import wavfile
from datetime import datetime
from urllib.parse import urlparse
from mega import Mega
from Applio import *


os.system("aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt -d . -o hubert_base.pt")
os.system("aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/rmvpe.pt -d . -o rmvpe.pt")
os.system("aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/sail-rvc/yoimiya-jp/resolve/main/model.pth -d ./weights -o yoimiya.pth")
os.system("aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/sail-rvc/yoimiya-jp/resolve/main/model.index -d ./weights/index -o yoimiya.index")



now_dir = os.getcwd()
tmp = os.path.join(now_dir, "TEMP")
shutil.rmtree(tmp, ignore_errors=True)
os.makedirs(tmp, exist_ok=True)
os.environ["TEMP"] = tmp
from lib.infer_pack.models import (
    SynthesizerTrnMs256NSFsid,
    SynthesizerTrnMs256NSFsid_nono,
    SynthesizerTrnMs768NSFsid,
    SynthesizerTrnMs768NSFsid_nono,
)
from fairseq import checkpoint_utils
from vc_infer_pipeline import VC
from config import Config
config = Config()

tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices())
voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list]

hubert_model = None

f0method_mode = ["pm", "harvest", "crepe"]
f0method_info = "PM is fast, Harvest is good but extremely slow, and Crepe effect is good but requires GPU (Default: PM)"

if os.path.isfile("rmvpe.pt"):
    f0method_mode.insert(2, "rmvpe")
    f0method_info = "PM is fast, Harvest is good but extremely slow, Rvmpe is alternative to harvest (might be better), and Crepe effect is good but requires GPU (Default: PM)"

def load_hubert():
    global hubert_model
    models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
        ["hubert_base.pt"],
        suffix="",
    )
    hubert_model = models[0]
    hubert_model = hubert_model.to(config.device)
    if config.is_half:
        hubert_model = hubert_model.half()
    else:
        hubert_model = hubert_model.float()
    hubert_model.eval()

load_hubert()

weight_root = "weights"
index_root = "weights/index"
weights_model = []
weights_index = []
for _, _, model_files in os.walk(weight_root):
    for file in model_files:
        if file.endswith(".pth"):
            weights_model.append(file)
for _, _, index_files in os.walk(index_root):
    for file in index_files:
        if file.endswith('.index') and "trained" not in file:
            weights_index.append(os.path.join(index_root, file))

def check_models():
    weights_model = []
    weights_index = []
    for _, _, model_files in os.walk(weight_root):
        for file in model_files:
            if file.endswith(".pth"):
                weights_model.append(file)
    for _, _, index_files in os.walk(index_root):
        for file in index_files:
            if file.endswith('.index') and "trained" not in file:
                weights_index.append(os.path.join(index_root, file))
    return (
        gr.Dropdown.update(choices=sorted(weights_model), value=weights_model[0]),
        gr.Dropdown.update(choices=sorted(weights_index))
    )

def clean():
    return (
        gr.Dropdown.update(value=""),
        gr.Slider.update(visible=False)
    )

def vc_single(
    sid,
    vc_audio_mode,
    input_audio_path,
    input_upload_audio,
    vocal_audio,
    tts_text,
    tts_voice,
    f0_up_key,
    f0_file,
    f0_method,
    file_index,
    index_rate,
    filter_radius,
    resample_sr,
    rms_mix_rate,
    protect
):  # spk_item, input_audio0, vc_transform0,f0_file,f0method0
    global tgt_sr, net_g, vc, hubert_model, version, cpt
    try:
        logs = []
        print(f"Converting...")
        logs.append(f"Converting...")
        yield "\n".join(logs), None
        if vc_audio_mode == "Input path" or "Youtube" and input_audio_path != "":
            audio, sr = librosa.load(input_audio_path, sr=16000, mono=True)
        elif vc_audio_mode == "Upload audio":
            selected_audio = input_upload_audio
            if vocal_audio:
                selected_audio = vocal_audio
            elif input_upload_audio:
                selected_audio = input_upload_audio
            sampling_rate, audio = selected_audio
            duration = audio.shape[0] / sampling_rate
            audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
            if len(audio.shape) > 1:
                audio = librosa.to_mono(audio.transpose(1, 0))
            if sampling_rate != 16000:
                audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
        elif vc_audio_mode == "TTS Audio":
            if tts_text is None or tts_voice is None:
                return "You need to enter text and select a voice", None
            asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save("tts.mp3"))
            audio, sr = librosa.load("tts.mp3", sr=16000, mono=True)
            input_audio_path = "tts.mp3"
        f0_up_key = int(f0_up_key)
        times = [0, 0, 0]
        if hubert_model == None:
            load_hubert()
        if_f0 = cpt.get("f0", 1)
        audio_opt = vc.pipeline(
            hubert_model,
            net_g,
            sid,
            audio,
            input_audio_path,
            times,
            f0_up_key,
            f0_method,
            file_index,
            # file_big_npy,
            index_rate,
            if_f0,
            filter_radius,
            tgt_sr,
            resample_sr,
            rms_mix_rate,
            version,
            protect,
            f0_file=f0_file
        )
        if resample_sr >= 16000 and tgt_sr != resample_sr:
            tgt_sr = resample_sr
        index_info = (
            "Using index:%s." % file_index
            if os.path.exists(file_index)
            else "Index not used."
        )
        print("Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % (
            index_info,
            times[0],
            times[1],
            times[2],
        ))
        info = f"{index_info}\n[{datetime.now().strftime('%Y-%m-%d %H:%M')}]: npy: {times[0]}, f0: {times[1]}s, infer: {times[2]}s"
        logs.append(info)
        yield "\n".join(logs), (tgt_sr, audio_opt)
    except:
        info = traceback.format_exc()
        print(info)
        logs.append(info)
        yield "\n".join(logs), None

def get_vc(sid, to_return_protect0):
    global n_spk, tgt_sr, net_g, vc, cpt, version, weights_index
    if sid == "" or sid == []:
        global hubert_model
        if hubert_model is not None:  # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
            print("clean_empty_cache")
            del net_g, n_spk, vc, hubert_model, tgt_sr  # ,cpt
            hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
            ###楼下不这么折腾清理不干净
            if_f0 = cpt.get("f0", 1)
            version = cpt.get("version", "v1")
            if version == "v1":
                if if_f0 == 1:
                    net_g = SynthesizerTrnMs256NSFsid(
                        *cpt["config"], is_half=config.is_half
                    )
                else:
                    net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
            elif version == "v2":
                if if_f0 == 1:
                    net_g = SynthesizerTrnMs768NSFsid(
                        *cpt["config"], is_half=config.is_half
                    )
                else:
                    net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
            del net_g, cpt
            if torch.cuda.is_available():
                torch.cuda.empty_cache()
            cpt = None
        return (
            gr.Slider.update(maximum=2333, visible=False),
            gr.Slider.update(visible=True),
            gr.Dropdown.update(choices=sorted(weights_index), value=""),
            gr.Markdown.update(value="# <center> No model selected")
        )
    print(f"Loading {sid} model...")
    selected_model = sid[:-4]
    cpt = torch.load(os.path.join(weight_root, sid), map_location="cpu")
    tgt_sr = cpt["config"][-1]
    cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0]
    if_f0 = cpt.get("f0", 1)
    if if_f0 == 0:
        to_return_protect0 = {
            "visible": False,
            "value": 0.5,
            "__type__": "update",
        }
    else:
        to_return_protect0 = {
            "visible": True,
            "value": to_return_protect0,
            "__type__": "update",
        }
    version = cpt.get("version", "v1")
    if version == "v1":
        if if_f0 == 1:
            net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
        else:
            net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
    elif version == "v2":
        if if_f0 == 1:
            net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
        else:
            net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
    del net_g.enc_q
    print(net_g.load_state_dict(cpt["weight"], strict=False))
    net_g.eval().to(config.device)
    if config.is_half:
        net_g = net_g.half()
    else:
        net_g = net_g.float()
    vc = VC(tgt_sr, config)
    n_spk = cpt["config"][-3]
    weights_index = []
    for _, _, index_files in os.walk(index_root):
        for file in index_files:
            if file.endswith('.index') and "trained" not in file:
                weights_index.append(os.path.join(index_root, file))
    if weights_index == []:
        selected_index = gr.Dropdown.update(value="")
    else:
        selected_index = gr.Dropdown.update(value=weights_index[0])
    for index, model_index in enumerate(weights_index):
        if selected_model in model_index:
            selected_index = gr.Dropdown.update(value=weights_index[index])
            break
    return (
        gr.Slider.update(maximum=n_spk, visible=True),
        to_return_protect0,
        selected_index,
        gr.Markdown.update(
            f'## <center> {selected_model}\n'+
            f'### <center> RVC {version} Model'
        )
    )

def find_audio_files(folder_path, extensions):
    audio_files = []
    for root, dirs, files in os.walk(folder_path):
        for file in files:
            if any(file.endswith(ext) for ext in extensions):
                audio_files.append(file)
    return audio_files

def vc_multi(
    spk_item,
    vc_input,
    vc_output,
    vc_transform0,
    f0method0,
    file_index,
    index_rate,
    filter_radius,
    resample_sr,
    rms_mix_rate,
    protect,
):
    global tgt_sr, net_g, vc, hubert_model, version, cpt
    logs = []
    logs.append("Converting...")
    yield "\n".join(logs)
    print()
    try:
        if os.path.exists(vc_input):
            folder_path = vc_input
            extensions = [".mp3", ".wav", ".flac", ".ogg"]
            audio_files = find_audio_files(folder_path, extensions)
            for index, file in enumerate(audio_files, start=1):
                audio, sr = librosa.load(os.path.join(folder_path, file), sr=16000, mono=True)
                input_audio_path = folder_path, file
                f0_up_key = int(vc_transform0)
                times = [0, 0, 0]
                if hubert_model == None:
                    load_hubert()
                if_f0 = cpt.get("f0", 1)
                audio_opt = vc.pipeline(
                    hubert_model,
                    net_g,
                    spk_item,
                    audio,
                    input_audio_path,
                    times,
                    f0_up_key,
                    f0method0,
                    file_index,
                    index_rate,
                    if_f0,
                    filter_radius,
                    tgt_sr,
                    resample_sr,
                    rms_mix_rate,
                    version,
                    protect,
                    f0_file=None
                )
                if resample_sr >= 16000 and tgt_sr != resample_sr:
                    tgt_sr = resample_sr
                output_path = f"{os.path.join(vc_output, file)}"
                os.makedirs(os.path.join(vc_output), exist_ok=True)
                sf.write(
                    output_path,
                    audio_opt,
                    tgt_sr,
                )
                info = f"{index} / {len(audio_files)} | {file}"
                print(info)
                logs.append(info)
                yield "\n".join(logs)
        else:
            logs.append("Folder not found or path doesn't exist.")
            yield "\n".join(logs)
    except:
        info = traceback.format_exc()
        print(info)
        logs.append(info)
        yield "\n".join(logs)

def download_audio(url, audio_provider):
    logs = []
    os.makedirs("dl_audio", exist_ok=True)
    if url == "":
        logs.append("URL required!")
        yield None, "\n".join(logs)
        return None, "\n".join(logs)
    if audio_provider == "Youtube":
        logs.append("Downloading the audio...")
        yield None, "\n".join(logs)
        ydl_opts = {
            'noplaylist': True,
            'format': 'bestaudio/best',
            'postprocessors': [{
                'key': 'FFmpegExtractAudio',
                'preferredcodec': 'wav',
            }],
            "outtmpl": 'result/dl_audio/audio',
        }
        audio_path = "result/dl_audio/audio.wav"
        with yt_dlp.YoutubeDL(ydl_opts) as ydl:
            ydl.download([url])
        logs.append("Download Complete.")
        yield audio_path, "\n".join(logs)

def cut_vocal_and_inst_yt(split_model):
    logs = []
    logs.append("Starting the audio splitting process...")
    yield "\n".join(logs), None, None, None
    command = f"demucs --two-stems=vocals -n {split_model} result/dl_audio/audio.wav -o output"
    result = subprocess.Popen(command.split(), stdout=subprocess.PIPE, text=True)
    for line in result.stdout:
        logs.append(line)
        yield "\n".join(logs), None, None, None
    print(result.stdout)
    vocal = f"output/{split_model}/audio/vocals.wav"
    inst = f"output/{split_model}/audio/no_vocals.wav"
    logs.append("Audio splitting complete.")
    yield "\n".join(logs), vocal, inst, vocal

def cut_vocal_and_inst(split_model, audio_data):
    logs = []
    vocal_path = "output/result/audio.wav"
    os.makedirs("output/result", exist_ok=True)
    wavfile.write(vocal_path, audio_data[0], audio_data[1])
    logs.append("Starting the audio splitting process...")
    yield "\n".join(logs), None, None
    command = f"demucs --two-stems=vocals -n {split_model} {vocal_path} -o output"
    result = subprocess.Popen(command.split(), stdout=subprocess.PIPE, text=True)
    for line in result.stdout:
        logs.append(line)
        yield "\n".join(logs), None, None
    print(result.stdout)
    vocal = f"output/{split_model}/audio/vocals.wav"
    inst = f"output/{split_model}/audio/no_vocals.wav"
    logs.append("Audio splitting complete.")
    yield "\n".join(logs), vocal, inst
    
def combine_vocal_and_inst(audio_data, vocal_volume, inst_volume, split_model):
    os.makedirs("output/result", exist_ok=True)
    vocal_path = "output/result/output.wav"
    output_path = "output/result/combine.mp3"
    inst_path = f"output/{split_model}/audio/no_vocals.wav"
    wavfile.write(vocal_path, audio_data[0], audio_data[1])
    command =  f'ffmpeg -y -i {inst_path} -i {vocal_path} -filter_complex [0:a]volume={inst_volume}[i];[1:a]volume={vocal_volume}[v];[i][v]amix=inputs=2:duration=longest[a] -map [a] -b:a 320k -c:a libmp3lame {output_path}'
    result = subprocess.run(command.split(), stdout=subprocess.PIPE)
    print(result.stdout.decode())
    return output_path

def download_and_extract_models(urls):
    logs = []
    os.makedirs("zips", exist_ok=True)
    os.makedirs(os.path.join("zips", "extract"), exist_ok=True)
    os.makedirs(os.path.join(weight_root), exist_ok=True)
    os.makedirs(os.path.join(index_root), exist_ok=True)
    for link in urls.splitlines():
        url = link.strip()
        if not url:
            raise gr.Error("URL Required!")
            return "No URLs provided."
        model_zip = urlparse(url).path.split('/')[-2] + '.zip'
        model_zip_path = os.path.join('zips', model_zip)
        logs.append(f"Downloading...")
        yield "\n".join(logs)
        if "drive.google.com" in url:
            gdown.download(url, os.path.join("zips", "extract"), quiet=False)
        elif "mega.nz" in url:
            m = Mega()
            m.download_url(url, 'zips')
        else:
            os.system(f"wget {url} -O {model_zip_path}")
        logs.append(f"Extracting...")
        yield "\n".join(logs)
        for filename in os.listdir("zips"):
            archived_file = os.path.join("zips", filename)
            if filename.endswith(".zip"):
                shutil.unpack_archive(archived_file, os.path.join("zips", "extract"), 'zip')
            elif filename.endswith(".rar"):
                with rarfile.RarFile(archived_file, 'r') as rar:
                    rar.extractall(os.path.join("zips", "extract"))
        for _, dirs, files in os.walk(os.path.join("zips", "extract")):
            logs.append(f"Searching Model and Index...")
            yield "\n".join(logs)
            model = False
            index = False
            if files:
                for file in files:
                    if file.endswith(".pth"):
                        basename = file[:-4]
                        shutil.move(os.path.join("zips", "extract", file), os.path.join(weight_root, file))
                        model = True
                    if file.endswith('.index') and "trained" not in file:
                        shutil.move(os.path.join("zips", "extract", file), os.path.join(index_root, file))
                        index = True
            else:
                logs.append("No model in main folder.")
                yield "\n".join(logs)
                logs.append("Searching in subfolders...")
                yield "\n".join(logs)
                for sub_dir in dirs:
                    for _, _, sub_files in os.walk(os.path.join("zips", "extract", sub_dir)):
                        for file in sub_files:
                            if file.endswith(".pth"):
                                basename = file[:-4]
                                shutil.move(os.path.join("zips", "extract", sub_dir, file), os.path.join(weight_root, file))
                                model = True
                            if file.endswith('.index') and "trained" not in file:
                                shutil.move(os.path.join("zips", "extract", sub_dir, file), os.path.join(index_root, file))
                                index = True  
                        shutil.rmtree(os.path.join("zips", "extract", sub_dir))
            if index is False:
                logs.append("Model only file, no Index file detected.")
                yield "\n".join(logs)
        logs.append("Download Completed!")
        yield "\n".join(logs)
    logs.append("Successfully download all models! Refresh your model list to load the model")
    yield "\n".join(logs)

def use_microphone(microphone):
    if microphone == True:
        return gr.Audio.update(source="microphone")
    else:
        return gr.Audio.update(source="upload")

def change_audio_mode(vc_audio_mode):
    if vc_audio_mode == "Input path":
        return (
            # Input & Upload
            gr.Textbox.update(visible=True),
            gr.Checkbox.update(visible=False),
            gr.Audio.update(visible=False),
            # Youtube
            gr.Dropdown.update(visible=False),
            gr.Textbox.update(visible=False),
            gr.Textbox.update(visible=False),
            gr.Button.update(visible=False),
            # Splitter
            gr.Dropdown.update(visible=True),
            gr.Textbox.update(visible=True),
            gr.Button.update(visible=True),
            gr.Button.update(visible=False),
            gr.Audio.update(visible=False),
            gr.Audio.update(visible=True),
            gr.Audio.update(visible=True),
            gr.Slider.update(visible=True),
            gr.Slider.update(visible=True),
            gr.Audio.update(visible=True),
            gr.Button.update(visible=True),
            # TTS
            gr.Textbox.update(visible=False),
            gr.Dropdown.update(visible=False)
        )
    elif vc_audio_mode == "Upload audio":
        return (
            # Input & Upload
            gr.Textbox.update(visible=False),
            gr.Checkbox.update(visible=True),
            gr.Audio.update(visible=True),
            # Youtube
            gr.Dropdown.update(visible=False),
            gr.Textbox.update(visible=False),
            gr.Textbox.update(visible=False),
            gr.Button.update(visible=False),
            # Splitter
            gr.Dropdown.update(visible=True),
            gr.Textbox.update(visible=True),
            gr.Button.update(visible=False),
            gr.Button.update(visible=True),
            gr.Audio.update(visible=False),
            gr.Audio.update(visible=True),
            gr.Audio.update(visible=True),
            gr.Slider.update(visible=True),
            gr.Slider.update(visible=True),
            gr.Audio.update(visible=True),
            gr.Button.update(visible=True),
            # TTS
            gr.Textbox.update(visible=False),
            gr.Dropdown.update(visible=False)
        )
    elif vc_audio_mode == "Youtube":
        return (
            # Input & Upload
            gr.Textbox.update(visible=False),
            gr.Checkbox.update(visible=False),
            gr.Audio.update(visible=False),
            # Youtube
            gr.Dropdown.update(visible=True),
            gr.Textbox.update(visible=True),
            gr.Textbox.update(visible=True),
            gr.Button.update(visible=True),
            # Splitter
            gr.Dropdown.update(visible=True),
            gr.Textbox.update(visible=True),
            gr.Button.update(visible=True),
            gr.Button.update(visible=False),
            gr.Audio.update(visible=True),
            gr.Audio.update(visible=True),
            gr.Audio.update(visible=True),
            gr.Slider.update(visible=True),
            gr.Slider.update(visible=True),
            gr.Audio.update(visible=True),
            gr.Button.update(visible=True),
            # TTS
            gr.Textbox.update(visible=False),
            gr.Dropdown.update(visible=False)
        )
    elif vc_audio_mode == "TTS Audio":
        return (
            # Input & Upload
            gr.Textbox.update(visible=False),
            gr.Checkbox.update(visible=False),
            gr.Audio.update(visible=False),
            # Youtube
            gr.Dropdown.update(visible=False),
            gr.Textbox.update(visible=False),
            gr.Textbox.update(visible=False),
            gr.Button.update(visible=False),
            # Splitter
            gr.Dropdown.update(visible=False),
            gr.Textbox.update(visible=False),
            gr.Button.update(visible=False),
            gr.Button.update(visible=False),
            gr.Audio.update(visible=False),
            gr.Audio.update(visible=False),
            gr.Audio.update(visible=False),
            gr.Slider.update(visible=False),
            gr.Slider.update(visible=False),
            gr.Audio.update(visible=False),
            gr.Button.update(visible=False),
            # TTS
            gr.Textbox.update(visible=True),
            gr.Dropdown.update(visible=True)
        )
        
with gr.Blocks(theme=applio) as app:
    gr.Markdown(
        "# <center> Advanced RVC Inference\n"
    )
    with gr.Row():
        sid = gr.Dropdown(
            label="Weight",
            choices=sorted(weights_model),
        )
        file_index = gr.Dropdown(
            label="List of index file",
            choices=sorted(weights_index),
            interactive=True,
        )
        spk_item = gr.Slider(
            minimum=0,
            maximum=2333,
            step=1,
            label="Speaker ID",
            value=0,
            visible=False,
            interactive=True,
        )
        refresh_model = gr.Button("Refresh model list", variant="primary")
        clean_button = gr.Button("Clear Model from memory", variant="primary")
        refresh_model.click(
            fn=check_models, inputs=[], outputs=[sid, file_index]
        )
        clean_button.click(fn=clean, inputs=[], outputs=[sid, spk_item])
    with gr.TabItem("Inference"):
        selected_model = gr.Markdown(value="# <center> No model selected")
        with gr.Row():
            with gr.Column():
                vc_audio_mode = gr.Dropdown(label="Input voice", choices=["Input path", "Upload audio", "Youtube", "TTS Audio"], allow_custom_value=False, value="Upload audio")
                # Input
                vc_input = gr.Textbox(label="Input audio path", visible=False)
                # Upload
                vc_microphone_mode = gr.Checkbox(label="Use Microphone", value=False, visible=True, interactive=True)
                vc_upload = gr.Audio(label="Upload audio file", source="upload", visible=True, interactive=True)
                # Youtube
                vc_download_audio = gr.Dropdown(label="Provider", choices=["Youtube"], allow_custom_value=False, visible=False, value="Youtube", info="Select provider (Default: Youtube)")
                vc_link = gr.Textbox(label="Youtube URL", visible=False, info="Example: https://www.youtube.com/watch?v=Nc0sB1Bmf-A", placeholder="https://www.youtube.com/watch?v=...")
                vc_log_yt = gr.Textbox(label="Output Information", visible=False, interactive=False)
                vc_download_button = gr.Button("Download Audio", variant="primary", visible=False)
                vc_audio_preview = gr.Audio(label="Downloaded Audio Preview", visible=False)
                # TTS
                tts_text = gr.Textbox(label="TTS text", info="Text to speech input", visible=False)
                tts_voice = gr.Dropdown(label="Edge-tts speaker", choices=voices, visible=False, allow_custom_value=False, value="en-US-AnaNeural-Female")
                # Splitter
                vc_split_model = gr.Dropdown(label="Splitter Model", choices=["hdemucs_mmi", "htdemucs", "htdemucs_ft", "mdx", "mdx_q", "mdx_extra_q"], allow_custom_value=False, visible=True, value="htdemucs", info="Select the splitter model (Default: htdemucs)")
                vc_split_log = gr.Textbox(label="Output Information", visible=True, interactive=False)
                vc_split_yt = gr.Button("Split Audio", variant="primary", visible=False)
                vc_split = gr.Button("Split Audio", variant="primary", visible=True)
                vc_vocal_preview = gr.Audio(label="Vocal Preview", interactive=False, visible=True)
                vc_inst_preview = gr.Audio(label="Instrumental Preview", interactive=False, visible=True)
        with gr.Accordion('settings', open=False):
            with gr.Column():
                vc_transform0 = gr.Number(
                    label="Transpose", 
                    info='Type "12" to change from male to female convertion or Type "-12" to change female to male convertion.',
                    value=0
                )
                f0method0 = gr.Radio(
                    label="Pitch extraction algorithm",
                    info=f0method_info,
                    choices=f0method_mode,
                    value="pm",
                    interactive=True,
                )
                index_rate0 = gr.Slider(
                    minimum=0,
                    maximum=1,
                    label="Retrieval feature ratio",
                    value=0.7,
                    interactive=True,
                )
                filter_radius0 = gr.Slider(
                    minimum=0,
                    maximum=7,
                    label="Apply Median Filtering",
                    info="The value represents the filter radius and can reduce breathiness.",
                    value=3,
                    step=1,
                    interactive=True,
                )
                resample_sr0 = gr.Slider(
                    minimum=0,
                    maximum=48000,
                    label="Resample the output audio",
                    info="Resample the output audio in post-processing to the final sample rate. Set to 0 for no resampling",
                    value=0,
                    step=1,
                    interactive=True,
                )
                rms_mix_rate0 = gr.Slider(
                    minimum=0,
                    maximum=1,
                    label="Volume Envelope",
                    info="Use the volume envelope of the input to replace or mix with the volume envelope of the output. The closer the ratio is to 1, the more the output envelope is used",
                    value=1,
                    interactive=True,
                )
                protect0 = gr.Slider(
                    minimum=0,
                    maximum=0.5,
                    label="Voice Protection",
                    info="Protect voiceless consonants and breath sounds to prevent artifacts such as tearing in electronic music. Set to 0.5 to disable. Decrease the value to increase protection, but it may reduce indexing accuracy",
                    value=0.5,
                    step=0.01,
                    interactive=True,
                )
                f0_file0 = gr.File(
                    label="F0 curve file (Optional)",
                    info="One pitch per line, Replace the default F0 and pitch modulation"
                )
            with gr.Column():
                vc_log = gr.Textbox(label="Output Information", interactive=False)
                vc_output = gr.Audio(label="Output Audio", interactive=False)
                vc_convert = gr.Button("Convert", variant="primary")
                vc_vocal_volume = gr.Slider(
                    minimum=0,
                    maximum=10,
                    label="Vocal volume",
                    value=1,
                    interactive=True,
                    step=1,
                    info="Adjust vocal volume (Default: 1}",
                    visible=True
                )
                vc_inst_volume = gr.Slider(
                    minimum=0,
                    maximum=10,
                    label="Instrument volume",
                    value=1,
                    interactive=True,
                    step=1,
                    info="Adjust instrument volume (Default: 1}",
                    visible=True
                )
                vc_combined_output = gr.Audio(label="Output Combined Audio", visible=True)
                vc_combine =  gr.Button("Combine",variant="primary", visible=True)
        vc_convert.click(
            vc_single,
            [
                spk_item,
                vc_audio_mode,
                vc_input,
                vc_upload,
                vc_vocal_preview,
                tts_text,
                tts_voice,
                vc_transform0,
                f0_file0,
                f0method0,
                file_index,
                index_rate0,
                filter_radius0,
                resample_sr0,
                rms_mix_rate0,
                protect0,
            ],
            [vc_log, vc_output],
        )
        vc_download_button.click(
            fn=download_audio, 
            inputs=[vc_link, vc_download_audio], 
            outputs=[vc_audio_preview, vc_log_yt]
        )
        vc_split_yt.click(
            fn=cut_vocal_and_inst_yt, 
            inputs=[vc_split_model], 
            outputs=[vc_split_log, vc_vocal_preview, vc_inst_preview, vc_input]
        )
        vc_split.click(
            fn=cut_vocal_and_inst, 
            inputs=[vc_split_model, vc_upload],
            outputs=[vc_split_log, vc_vocal_preview, vc_inst_preview]
        )
        vc_combine.click(
            fn=combine_vocal_and_inst,
            inputs=[vc_output, vc_vocal_volume, vc_inst_volume, vc_split_model],
            outputs=[vc_combined_output]
        )
        vc_microphone_mode.change(
            fn=use_microphone,
            inputs=vc_microphone_mode,
            outputs=vc_upload
        )
        vc_audio_mode.change(
            fn=change_audio_mode,
            inputs=[vc_audio_mode],
            outputs=[
                # Input & Upload
                vc_input,
                vc_microphone_mode,
                vc_upload,
                # Youtube
                vc_download_audio,
                vc_link,
                vc_log_yt,
                vc_download_button,
                # Splitter
                vc_split_model,
                vc_split_log,
                vc_split_yt,
                vc_split,
                vc_audio_preview,
                vc_vocal_preview,
                vc_inst_preview,
                vc_vocal_volume,
                vc_inst_volume,
                vc_combined_output,
                vc_combine,
                # TTS
                tts_text,
                tts_voice
            ]
        )
        sid.change(fn=get_vc, inputs=[sid, protect0], outputs=[spk_item, protect0, file_index, selected_model])
    with gr.TabItem("Batch Inference"):
        with gr.Row():
            with gr.Column():
                vc_input_bat = gr.Textbox(label="Input audio path (folder)", visible=True)
                vc_output_bat = gr.Textbox(label="Output audio path (folder)", value="result/batch", visible=True)
            with gr.Column():
                vc_transform0_bat = gr.Number(
                    label="Transpose", 
                    info='Type "12" to change from male to female convertion or Type "-12" to change female to male convertion.',
                    value=0
                )
                f0method0_bat = gr.Radio(
                    label="Pitch extraction algorithm",
                    info=f0method_info,
                    choices=f0method_mode,
                    value="pm",
                    interactive=True,
                )
                index_rate0_bat = gr.Slider(
                    minimum=0,
                    maximum=1,
                    label="Retrieval feature ratio",
                    value=0.7,
                    interactive=True,
                )
                filter_radius0_bat = gr.Slider(
                    minimum=0,
                    maximum=7,
                    label="Apply Median Filtering",
                    info="The value represents the filter radius and can reduce breathiness.",
                    value=3,
                    step=1,
                    interactive=True,
                )
                resample_sr0_bat = gr.Slider(
                    minimum=0,
                    maximum=48000,
                    label="Resample the output audio",
                    info="Resample the output audio in post-processing to the final sample rate. Set to 0 for no resampling",
                    value=0,
                    step=1,
                    interactive=True,
                )
                rms_mix_rate0_bat = gr.Slider(
                    minimum=0,
                    maximum=1,
                    label="Volume Envelope",
                    info="Use the volume envelope of the input to replace or mix with the volume envelope of the output. The closer the ratio is to 1, the more the output envelope is used",
                    value=1,
                    interactive=True,
                )
                protect0_bat = gr.Slider(
                    minimum=0,
                    maximum=0.5,
                    label="Voice Protection",
                    info="Protect voiceless consonants and breath sounds to prevent artifacts such as tearing in electronic music. Set to 0.5 to disable. Decrease the value to increase protection, but it may reduce indexing accuracy",
                    value=0.5,
                    step=0.01,
                    interactive=True,
                )
            with gr.Column():
                vc_log_bat = gr.Textbox(label="Output Information", interactive=False)
                vc_convert_bat = gr.Button("Convert", variant="primary")
        vc_convert_bat.click(
            vc_multi,
            [
                spk_item,
                vc_input_bat,
                vc_output_bat,
                vc_transform0_bat,
                f0method0_bat,
                file_index,
                index_rate0_bat,
                filter_radius0_bat,
                resample_sr0_bat,
                rms_mix_rate0_bat,
                protect0_bat,
            ],
            [vc_log_bat],
        )
    with gr.TabItem("Model Downloader"):
        gr.Markdown(
            "# <center> Model Downloader (Beta)\n"+
            "#### <center> To download multi link you have to put your link to the textbox and every link separated by space\n"+
            "#### <center> Support Direct Link, Mega, Google Drive, etc"
        )
        with gr.Column():
            md_text = gr.Textbox(label="URL")
        with gr.Row():
            md_download = gr.Button(label="Convert", variant="primary")
            md_download_logs = gr.Textbox(label="Output information", interactive=False)
            md_download.click(
                fn=download_and_extract_models,
                inputs=[md_text],
                outputs=[md_download_logs]
            )
    
    app.queue(concurrency_count=1, max_size=50, api_open=config.api).launch(share=config.colab, show_api=False)