MIDI-Renderer / TMIDIX.py
asigalov61's picture
Upload TMIDIX.py
77240fe verified
raw
history blame
162 kB
#! /usr/bin/python3
r'''###############################################################################
###################################################################################
#
#
# Tegridy MIDI X Module (TMIDI X / tee-midi eks)
# Version 1.0
#
# NOTE: TMIDI X Module starts after the partial MIDI.py module @ line 1342
#
# Based upon MIDI.py module v.6.7. by Peter Billam / pjb.com.au
#
# Project Los Angeles
#
# Tegridy Code 2021
#
# https://github.com/Tegridy-Code/Project-Los-Angeles
#
#
###################################################################################
###################################################################################
# Copyright 2021 Project Los Angeles / Tegridy Code
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
###################################################################################
###################################################################################
#
# PARTIAL MIDI.py Module v.6.7. by Peter Billam
# Please see TMIDI 2.3/tegridy-tools repo for full MIDI.py module code
#
# Or you can always download the latest full version from:
#
# https://pjb.com.au/
# https://peterbillam.gitlab.io/miditools/
#
# Copyright 2020 Peter Billam
#
###################################################################################
###################################################################################'''
import sys, struct, copy
Version = '6.7'
VersionDate = '20201120'
_previous_warning = '' # 5.4
_previous_times = 0 # 5.4
#------------------------------- Encoding stuff --------------------------
def opus2midi(opus=[], text_encoding='ISO-8859-1'):
r'''The argument is a list: the first item in the list is the "ticks"
parameter, the others are the tracks. Each track is a list
of midi-events, and each event is itself a list; see above.
opus2midi() returns a bytestring of the MIDI, which can then be
written either to a file opened in binary mode (mode='wb'),
or to stdout by means of: sys.stdout.buffer.write()
my_opus = [
96,
[ # track 0:
['patch_change', 0, 1, 8], # and these are the events...
['note_on', 5, 1, 25, 96],
['note_off', 96, 1, 25, 0],
['note_on', 0, 1, 29, 96],
['note_off', 96, 1, 29, 0],
], # end of track 0
]
my_midi = opus2midi(my_opus)
sys.stdout.buffer.write(my_midi)
'''
if len(opus) < 2:
opus=[1000, [],]
tracks = copy.deepcopy(opus)
ticks = int(tracks.pop(0))
ntracks = len(tracks)
if ntracks == 1:
format = 0
else:
format = 1
my_midi = b"MThd\x00\x00\x00\x06"+struct.pack('>HHH',format,ntracks,ticks)
for track in tracks:
events = _encode(track, text_encoding=text_encoding)
my_midi += b'MTrk' + struct.pack('>I',len(events)) + events
_clean_up_warnings()
return my_midi
def score2opus(score=None, text_encoding='ISO-8859-1'):
r'''
The argument is a list: the first item in the list is the "ticks"
parameter, the others are the tracks. Each track is a list
of score-events, and each event is itself a list. A score-event
is similar to an opus-event (see above), except that in a score:
1) the times are expressed as an absolute number of ticks
from the track's start time
2) the pairs of 'note_on' and 'note_off' events in an "opus"
are abstracted into a single 'note' event in a "score":
['note', start_time, duration, channel, pitch, velocity]
score2opus() returns a list specifying the equivalent "opus".
my_score = [
96,
[ # track 0:
['patch_change', 0, 1, 8],
['note', 5, 96, 1, 25, 96],
['note', 101, 96, 1, 29, 96]
], # end of track 0
]
my_opus = score2opus(my_score)
'''
if len(score) < 2:
score=[1000, [],]
tracks = copy.deepcopy(score)
ticks = int(tracks.pop(0))
opus_tracks = []
for scoretrack in tracks:
time2events = dict([])
for scoreevent in scoretrack:
if scoreevent[0] == 'note':
note_on_event = ['note_on',scoreevent[1],
scoreevent[3],scoreevent[4],scoreevent[5]]
note_off_event = ['note_off',scoreevent[1]+scoreevent[2],
scoreevent[3],scoreevent[4],scoreevent[5]]
if time2events.get(note_on_event[1]):
time2events[note_on_event[1]].append(note_on_event)
else:
time2events[note_on_event[1]] = [note_on_event,]
if time2events.get(note_off_event[1]):
time2events[note_off_event[1]].append(note_off_event)
else:
time2events[note_off_event[1]] = [note_off_event,]
continue
if time2events.get(scoreevent[1]):
time2events[scoreevent[1]].append(scoreevent)
else:
time2events[scoreevent[1]] = [scoreevent,]
sorted_times = [] # list of keys
for k in time2events.keys():
sorted_times.append(k)
sorted_times.sort()
sorted_events = [] # once-flattened list of values sorted by key
for time in sorted_times:
sorted_events.extend(time2events[time])
abs_time = 0
for event in sorted_events: # convert abs times => delta times
delta_time = event[1] - abs_time
abs_time = event[1]
event[1] = delta_time
opus_tracks.append(sorted_events)
opus_tracks.insert(0,ticks)
_clean_up_warnings()
return opus_tracks
def score2midi(score=None, text_encoding='ISO-8859-1'):
r'''
Translates a "score" into MIDI, using score2opus() then opus2midi()
'''
return opus2midi(score2opus(score, text_encoding), text_encoding)
#--------------------------- Decoding stuff ------------------------
def midi2opus(midi=b'', do_not_check_MIDI_signature=False):
r'''Translates MIDI into a "opus". For a description of the
"opus" format, see opus2midi()
'''
my_midi=bytearray(midi)
if len(my_midi) < 4:
_clean_up_warnings()
return [1000,[],]
id = bytes(my_midi[0:4])
if id != b'MThd':
_warn("midi2opus: midi starts with "+str(id)+" instead of 'MThd'")
_clean_up_warnings()
if do_not_check_MIDI_signature == False:
return [1000,[],]
[length, format, tracks_expected, ticks] = struct.unpack(
'>IHHH', bytes(my_midi[4:14]))
if length != 6:
_warn("midi2opus: midi header length was "+str(length)+" instead of 6")
_clean_up_warnings()
return [1000,[],]
my_opus = [ticks,]
my_midi = my_midi[14:]
track_num = 1 # 5.1
while len(my_midi) >= 8:
track_type = bytes(my_midi[0:4])
if track_type != b'MTrk':
#_warn('midi2opus: Warning: track #'+str(track_num)+' type is '+str(track_type)+" instead of b'MTrk'")
pass
[track_length] = struct.unpack('>I', my_midi[4:8])
my_midi = my_midi[8:]
if track_length > len(my_midi):
_warn('midi2opus: track #'+str(track_num)+' length '+str(track_length)+' is too large')
_clean_up_warnings()
return my_opus # 5.0
my_midi_track = my_midi[0:track_length]
my_track = _decode(my_midi_track)
my_opus.append(my_track)
my_midi = my_midi[track_length:]
track_num += 1 # 5.1
_clean_up_warnings()
return my_opus
def opus2score(opus=[]):
r'''For a description of the "opus" and "score" formats,
see opus2midi() and score2opus().
'''
if len(opus) < 2:
_clean_up_warnings()
return [1000,[],]
tracks = copy.deepcopy(opus) # couple of slices probably quicker...
ticks = int(tracks.pop(0))
score = [ticks,]
for opus_track in tracks:
ticks_so_far = 0
score_track = []
chapitch2note_on_events = dict([]) # 4.0
for opus_event in opus_track:
ticks_so_far += opus_event[1]
if opus_event[0] == 'note_off' or (opus_event[0] == 'note_on' and opus_event[4] == 0): # 4.8
cha = opus_event[2]
pitch = opus_event[3]
key = cha*128 + pitch
if chapitch2note_on_events.get(key):
new_event = chapitch2note_on_events[key].pop(0)
new_event[2] = ticks_so_far - new_event[1]
score_track.append(new_event)
elif pitch > 127:
pass #_warn('opus2score: note_off with no note_on, bad pitch='+str(pitch))
else:
pass #_warn('opus2score: note_off with no note_on cha='+str(cha)+' pitch='+str(pitch))
elif opus_event[0] == 'note_on':
cha = opus_event[2]
pitch = opus_event[3]
key = cha*128 + pitch
new_event = ['note',ticks_so_far,0,cha,pitch, opus_event[4]]
if chapitch2note_on_events.get(key):
chapitch2note_on_events[key].append(new_event)
else:
chapitch2note_on_events[key] = [new_event,]
else:
opus_event[1] = ticks_so_far
score_track.append(opus_event)
# check for unterminated notes (Oisín) -- 5.2
for chapitch in chapitch2note_on_events:
note_on_events = chapitch2note_on_events[chapitch]
for new_e in note_on_events:
new_e[2] = ticks_so_far - new_e[1]
score_track.append(new_e)
pass #_warn("opus2score: note_on with no note_off cha="+str(new_e[3])+' pitch='+str(new_e[4])+'; adding note_off at end')
score.append(score_track)
_clean_up_warnings()
return score
def midi2score(midi=b'', do_not_check_MIDI_signature=False):
r'''
Translates MIDI into a "score", using midi2opus() then opus2score()
'''
return opus2score(midi2opus(midi, do_not_check_MIDI_signature))
def midi2ms_score(midi=b'', do_not_check_MIDI_signature=False):
r'''
Translates MIDI into a "score" with one beat per second and one
tick per millisecond, using midi2opus() then to_millisecs()
then opus2score()
'''
return opus2score(to_millisecs(midi2opus(midi, do_not_check_MIDI_signature)))
def midi2single_track_ms_score(midi_path_or_bytes,
recalculate_channels = False,
pass_old_timings_events= False,
verbose = False,
do_not_check_MIDI_signature=False
):
r'''
Translates MIDI into a single track "score" with 16 instruments and one beat per second and one
tick per millisecond
'''
if type(midi_path_or_bytes) == bytes:
midi_data = midi_path_or_bytes
elif type(midi_path_or_bytes) == str:
midi_data = open(midi_path_or_bytes, 'rb').read()
score = midi2score(midi_data, do_not_check_MIDI_signature)
if recalculate_channels:
events_matrixes = []
itrack = 1
events_matrixes_channels = []
while itrack < len(score):
events_matrix = []
for event in score[itrack]:
if event[0] == 'note' and event[3] != 9:
event[3] = (16 * (itrack-1)) + event[3]
if event[3] not in events_matrixes_channels:
events_matrixes_channels.append(event[3])
events_matrix.append(event)
events_matrixes.append(events_matrix)
itrack += 1
events_matrix1 = []
for e in events_matrixes:
events_matrix1.extend(e)
if verbose:
if len(events_matrixes_channels) > 16:
print('MIDI has', len(events_matrixes_channels), 'instruments!', len(events_matrixes_channels) - 16, 'instrument(s) will be removed!')
for e in events_matrix1:
if e[0] == 'note' and e[3] != 9:
if e[3] in events_matrixes_channels[:15]:
if events_matrixes_channels[:15].index(e[3]) < 9:
e[3] = events_matrixes_channels[:15].index(e[3])
else:
e[3] = events_matrixes_channels[:15].index(e[3])+1
else:
events_matrix1.remove(e)
if e[0] in ['patch_change', 'control_change', 'channel_after_touch', 'key_after_touch', 'pitch_wheel_change'] and e[2] != 9:
if e[2] in [e % 16 for e in events_matrixes_channels[:15]]:
if [e % 16 for e in events_matrixes_channels[:15]].index(e[2]) < 9:
e[2] = [e % 16 for e in events_matrixes_channels[:15]].index(e[2])
else:
e[2] = [e % 16 for e in events_matrixes_channels[:15]].index(e[2])+1
else:
events_matrix1.remove(e)
else:
events_matrix1 = []
itrack = 1
while itrack < len(score):
for event in score[itrack]:
events_matrix1.append(event)
itrack += 1
opus = score2opus([score[0], events_matrix1])
ms_score = opus2score(to_millisecs(opus, pass_old_timings_events=pass_old_timings_events))
return ms_score
#------------------------ Other Transformations ---------------------
def to_millisecs(old_opus=None, desired_time_in_ms=1, pass_old_timings_events = False):
r'''Recallibrates all the times in an "opus" to use one beat
per second and one tick per millisecond. This makes it
hard to retrieve any information about beats or barlines,
but it does make it easy to mix different scores together.
'''
if old_opus == None:
return [1000 * desired_time_in_ms,[],]
try:
old_tpq = int(old_opus[0])
except IndexError: # 5.0
_warn('to_millisecs: the opus '+str(type(old_opus))+' has no elements')
return [1000 * desired_time_in_ms,[],]
new_opus = [1000 * desired_time_in_ms,]
# 6.7 first go through building a table of set_tempos by absolute-tick
ticks2tempo = {}
itrack = 1
while itrack < len(old_opus):
ticks_so_far = 0
for old_event in old_opus[itrack]:
if old_event[0] == 'note':
raise TypeError('to_millisecs needs an opus, not a score')
ticks_so_far += old_event[1]
if old_event[0] == 'set_tempo':
ticks2tempo[ticks_so_far] = old_event[2]
itrack += 1
# then get the sorted-array of their keys
tempo_ticks = [] # list of keys
for k in ticks2tempo.keys():
tempo_ticks.append(k)
tempo_ticks.sort()
# then go through converting to millisec, testing if the next
# set_tempo lies before the next track-event, and using it if so.
itrack = 1
while itrack < len(old_opus):
ms_per_old_tick = 400 / old_tpq # float: will round later 6.3
i_tempo_ticks = 0
ticks_so_far = 0
ms_so_far = 0.0
previous_ms_so_far = 0.0
if pass_old_timings_events:
new_track = [['set_tempo',0,1000000 * desired_time_in_ms],['old_tpq', 0, old_tpq]] # new "crochet" is 1 sec
else:
new_track = [['set_tempo',0,1000000 * desired_time_in_ms],] # new "crochet" is 1 sec
for old_event in old_opus[itrack]:
# detect if ticks2tempo has something before this event
# 20160702 if ticks2tempo is at the same time, leave it
event_delta_ticks = old_event[1] * desired_time_in_ms
if (i_tempo_ticks < len(tempo_ticks) and
tempo_ticks[i_tempo_ticks] < (ticks_so_far + old_event[1]) * desired_time_in_ms):
delta_ticks = tempo_ticks[i_tempo_ticks] - ticks_so_far
ms_so_far += (ms_per_old_tick * delta_ticks * desired_time_in_ms)
ticks_so_far = tempo_ticks[i_tempo_ticks]
ms_per_old_tick = ticks2tempo[ticks_so_far] / (1000.0*old_tpq * desired_time_in_ms)
i_tempo_ticks += 1
event_delta_ticks -= delta_ticks
new_event = copy.deepcopy(old_event) # now handle the new event
ms_so_far += (ms_per_old_tick * old_event[1] * desired_time_in_ms)
new_event[1] = round(ms_so_far - previous_ms_so_far)
if pass_old_timings_events:
if old_event[0] != 'set_tempo':
previous_ms_so_far = ms_so_far
new_track.append(new_event)
else:
new_event[0] = 'old_set_tempo'
previous_ms_so_far = ms_so_far
new_track.append(new_event)
else:
if old_event[0] != 'set_tempo':
previous_ms_so_far = ms_so_far
new_track.append(new_event)
ticks_so_far += event_delta_ticks
new_opus.append(new_track)
itrack += 1
_clean_up_warnings()
return new_opus
def event2alsaseq(event=None): # 5.5
r'''Converts an event into the format needed by the alsaseq module,
http://pp.com.mx/python/alsaseq
The type of track (opus or score) is autodetected.
'''
pass
def grep(score=None, channels=None):
r'''Returns a "score" containing only the channels specified
'''
if score == None:
return [1000,[],]
ticks = score[0]
new_score = [ticks,]
if channels == None:
return new_score
channels = set(channels)
global Event2channelindex
itrack = 1
while itrack < len(score):
new_score.append([])
for event in score[itrack]:
channel_index = Event2channelindex.get(event[0], False)
if channel_index:
if event[channel_index] in channels:
new_score[itrack].append(event)
else:
new_score[itrack].append(event)
itrack += 1
return new_score
def play_score(score=None):
r'''Converts the "score" to midi, and feeds it into 'aplaymidi -'
'''
if score == None:
return
import subprocess
pipe = subprocess.Popen(['aplaymidi','-'], stdin=subprocess.PIPE)
if score_type(score) == 'opus':
pipe.stdin.write(opus2midi(score))
else:
pipe.stdin.write(score2midi(score))
pipe.stdin.close()
def score2stats(opus_or_score=None):
r'''Returns a dict of some basic stats about the score, like
bank_select (list of tuples (msb,lsb)),
channels_by_track (list of lists), channels_total (set),
general_midi_mode (list),
ntracks, nticks, patch_changes_by_track (list of dicts),
num_notes_by_channel (list of numbers),
patch_changes_total (set),
percussion (dict histogram of channel 9 events),
pitches (dict histogram of pitches on channels other than 9),
pitch_range_by_track (list, by track, of two-member-tuples),
pitch_range_sum (sum over tracks of the pitch_ranges),
'''
bank_select_msb = -1
bank_select_lsb = -1
bank_select = []
channels_by_track = []
channels_total = set([])
general_midi_mode = []
num_notes_by_channel = dict([])
patches_used_by_track = []
patches_used_total = set([])
patch_changes_by_track = []
patch_changes_total = set([])
percussion = dict([]) # histogram of channel 9 "pitches"
pitches = dict([]) # histogram of pitch-occurrences channels 0-8,10-15
pitch_range_sum = 0 # u pitch-ranges of each track
pitch_range_by_track = []
is_a_score = True
if opus_or_score == None:
return {'bank_select':[], 'channels_by_track':[], 'channels_total':[],
'general_midi_mode':[], 'ntracks':0, 'nticks':0,
'num_notes_by_channel':dict([]),
'patch_changes_by_track':[], 'patch_changes_total':[],
'percussion':{}, 'pitches':{}, 'pitch_range_by_track':[],
'ticks_per_quarter':0, 'pitch_range_sum':0}
ticks_per_quarter = opus_or_score[0]
i = 1 # ignore first element, which is ticks
nticks = 0
while i < len(opus_or_score):
highest_pitch = 0
lowest_pitch = 128
channels_this_track = set([])
patch_changes_this_track = dict({})
for event in opus_or_score[i]:
if event[0] == 'note':
num_notes_by_channel[event[3]] = num_notes_by_channel.get(event[3],0) + 1
if event[3] == 9:
percussion[event[4]] = percussion.get(event[4],0) + 1
else:
pitches[event[4]] = pitches.get(event[4],0) + 1
if event[4] > highest_pitch:
highest_pitch = event[4]
if event[4] < lowest_pitch:
lowest_pitch = event[4]
channels_this_track.add(event[3])
channels_total.add(event[3])
finish_time = event[1] + event[2]
if finish_time > nticks:
nticks = finish_time
elif event[0] == 'note_off' or (event[0] == 'note_on' and event[4] == 0): # 4.8
finish_time = event[1]
if finish_time > nticks:
nticks = finish_time
elif event[0] == 'note_on':
is_a_score = False
num_notes_by_channel[event[2]] = num_notes_by_channel.get(event[2],0) + 1
if event[2] == 9:
percussion[event[3]] = percussion.get(event[3],0) + 1
else:
pitches[event[3]] = pitches.get(event[3],0) + 1
if event[3] > highest_pitch:
highest_pitch = event[3]
if event[3] < lowest_pitch:
lowest_pitch = event[3]
channels_this_track.add(event[2])
channels_total.add(event[2])
elif event[0] == 'patch_change':
patch_changes_this_track[event[2]] = event[3]
patch_changes_total.add(event[3])
elif event[0] == 'control_change':
if event[3] == 0: # bank select MSB
bank_select_msb = event[4]
elif event[3] == 32: # bank select LSB
bank_select_lsb = event[4]
if bank_select_msb >= 0 and bank_select_lsb >= 0:
bank_select.append((bank_select_msb,bank_select_lsb))
bank_select_msb = -1
bank_select_lsb = -1
elif event[0] == 'sysex_f0':
if _sysex2midimode.get(event[2], -1) >= 0:
general_midi_mode.append(_sysex2midimode.get(event[2]))
if is_a_score:
if event[1] > nticks:
nticks = event[1]
else:
nticks += event[1]
if lowest_pitch == 128:
lowest_pitch = 0
channels_by_track.append(channels_this_track)
patch_changes_by_track.append(patch_changes_this_track)
pitch_range_by_track.append((lowest_pitch,highest_pitch))
pitch_range_sum += (highest_pitch-lowest_pitch)
i += 1
return {'bank_select':bank_select,
'channels_by_track':channels_by_track,
'channels_total':channels_total,
'general_midi_mode':general_midi_mode,
'ntracks':len(opus_or_score)-1,
'nticks':nticks,
'num_notes_by_channel':num_notes_by_channel,
'patch_changes_by_track':patch_changes_by_track,
'patch_changes_total':patch_changes_total,
'percussion':percussion,
'pitches':pitches,
'pitch_range_by_track':pitch_range_by_track,
'pitch_range_sum':pitch_range_sum,
'ticks_per_quarter':ticks_per_quarter}
#----------------------------- Event stuff --------------------------
_sysex2midimode = {
"\x7E\x7F\x09\x01\xF7": 1,
"\x7E\x7F\x09\x02\xF7": 0,
"\x7E\x7F\x09\x03\xF7": 2,
}
# Some public-access tuples:
MIDI_events = tuple('''note_off note_on key_after_touch
control_change patch_change channel_after_touch
pitch_wheel_change'''.split())
Text_events = tuple('''text_event copyright_text_event
track_name instrument_name lyric marker cue_point text_event_08
text_event_09 text_event_0a text_event_0b text_event_0c
text_event_0d text_event_0e text_event_0f'''.split())
Nontext_meta_events = tuple('''end_track set_tempo
smpte_offset time_signature key_signature sequencer_specific
raw_meta_event sysex_f0 sysex_f7 song_position song_select
tune_request'''.split())
# unsupported: raw_data
# Actually, 'tune_request' is is F-series event, not strictly a meta-event...
Meta_events = Text_events + Nontext_meta_events
All_events = MIDI_events + Meta_events
# And three dictionaries:
Number2patch = { # General MIDI patch numbers:
0:'Acoustic Grand',
1:'Bright Acoustic',
2:'Electric Grand',
3:'Honky-Tonk',
4:'Electric Piano 1',
5:'Electric Piano 2',
6:'Harpsichord',
7:'Clav',
8:'Celesta',
9:'Glockenspiel',
10:'Music Box',
11:'Vibraphone',
12:'Marimba',
13:'Xylophone',
14:'Tubular Bells',
15:'Dulcimer',
16:'Drawbar Organ',
17:'Percussive Organ',
18:'Rock Organ',
19:'Church Organ',
20:'Reed Organ',
21:'Accordion',
22:'Harmonica',
23:'Tango Accordion',
24:'Acoustic Guitar(nylon)',
25:'Acoustic Guitar(steel)',
26:'Electric Guitar(jazz)',
27:'Electric Guitar(clean)',
28:'Electric Guitar(muted)',
29:'Overdriven Guitar',
30:'Distortion Guitar',
31:'Guitar Harmonics',
32:'Acoustic Bass',
33:'Electric Bass(finger)',
34:'Electric Bass(pick)',
35:'Fretless Bass',
36:'Slap Bass 1',
37:'Slap Bass 2',
38:'Synth Bass 1',
39:'Synth Bass 2',
40:'Violin',
41:'Viola',
42:'Cello',
43:'Contrabass',
44:'Tremolo Strings',
45:'Pizzicato Strings',
46:'Orchestral Harp',
47:'Timpani',
48:'String Ensemble 1',
49:'String Ensemble 2',
50:'SynthStrings 1',
51:'SynthStrings 2',
52:'Choir Aahs',
53:'Voice Oohs',
54:'Synth Voice',
55:'Orchestra Hit',
56:'Trumpet',
57:'Trombone',
58:'Tuba',
59:'Muted Trumpet',
60:'French Horn',
61:'Brass Section',
62:'SynthBrass 1',
63:'SynthBrass 2',
64:'Soprano Sax',
65:'Alto Sax',
66:'Tenor Sax',
67:'Baritone Sax',
68:'Oboe',
69:'English Horn',
70:'Bassoon',
71:'Clarinet',
72:'Piccolo',
73:'Flute',
74:'Recorder',
75:'Pan Flute',
76:'Blown Bottle',
77:'Skakuhachi',
78:'Whistle',
79:'Ocarina',
80:'Lead 1 (square)',
81:'Lead 2 (sawtooth)',
82:'Lead 3 (calliope)',
83:'Lead 4 (chiff)',
84:'Lead 5 (charang)',
85:'Lead 6 (voice)',
86:'Lead 7 (fifths)',
87:'Lead 8 (bass+lead)',
88:'Pad 1 (new age)',
89:'Pad 2 (warm)',
90:'Pad 3 (polysynth)',
91:'Pad 4 (choir)',
92:'Pad 5 (bowed)',
93:'Pad 6 (metallic)',
94:'Pad 7 (halo)',
95:'Pad 8 (sweep)',
96:'FX 1 (rain)',
97:'FX 2 (soundtrack)',
98:'FX 3 (crystal)',
99:'FX 4 (atmosphere)',
100:'FX 5 (brightness)',
101:'FX 6 (goblins)',
102:'FX 7 (echoes)',
103:'FX 8 (sci-fi)',
104:'Sitar',
105:'Banjo',
106:'Shamisen',
107:'Koto',
108:'Kalimba',
109:'Bagpipe',
110:'Fiddle',
111:'Shanai',
112:'Tinkle Bell',
113:'Agogo',
114:'Steel Drums',
115:'Woodblock',
116:'Taiko Drum',
117:'Melodic Tom',
118:'Synth Drum',
119:'Reverse Cymbal',
120:'Guitar Fret Noise',
121:'Breath Noise',
122:'Seashore',
123:'Bird Tweet',
124:'Telephone Ring',
125:'Helicopter',
126:'Applause',
127:'Gunshot',
}
Notenum2percussion = { # General MIDI Percussion (on Channel 9):
35:'Acoustic Bass Drum',
36:'Bass Drum 1',
37:'Side Stick',
38:'Acoustic Snare',
39:'Hand Clap',
40:'Electric Snare',
41:'Low Floor Tom',
42:'Closed Hi-Hat',
43:'High Floor Tom',
44:'Pedal Hi-Hat',
45:'Low Tom',
46:'Open Hi-Hat',
47:'Low-Mid Tom',
48:'Hi-Mid Tom',
49:'Crash Cymbal 1',
50:'High Tom',
51:'Ride Cymbal 1',
52:'Chinese Cymbal',
53:'Ride Bell',
54:'Tambourine',
55:'Splash Cymbal',
56:'Cowbell',
57:'Crash Cymbal 2',
58:'Vibraslap',
59:'Ride Cymbal 2',
60:'Hi Bongo',
61:'Low Bongo',
62:'Mute Hi Conga',
63:'Open Hi Conga',
64:'Low Conga',
65:'High Timbale',
66:'Low Timbale',
67:'High Agogo',
68:'Low Agogo',
69:'Cabasa',
70:'Maracas',
71:'Short Whistle',
72:'Long Whistle',
73:'Short Guiro',
74:'Long Guiro',
75:'Claves',
76:'Hi Wood Block',
77:'Low Wood Block',
78:'Mute Cuica',
79:'Open Cuica',
80:'Mute Triangle',
81:'Open Triangle',
}
Event2channelindex = { 'note':3, 'note_off':2, 'note_on':2,
'key_after_touch':2, 'control_change':2, 'patch_change':2,
'channel_after_touch':2, 'pitch_wheel_change':2
}
################################################################
# The code below this line is full of frightening things, all to
# do with the actual encoding and decoding of binary MIDI data.
def _twobytes2int(byte_a):
r'''decode a 16 bit quantity from two bytes,'''
return (byte_a[1] | (byte_a[0] << 8))
def _int2twobytes(int_16bit):
r'''encode a 16 bit quantity into two bytes,'''
return bytes([(int_16bit>>8) & 0xFF, int_16bit & 0xFF])
def _read_14_bit(byte_a):
r'''decode a 14 bit quantity from two bytes,'''
return (byte_a[0] | (byte_a[1] << 7))
def _write_14_bit(int_14bit):
r'''encode a 14 bit quantity into two bytes,'''
return bytes([int_14bit & 0x7F, (int_14bit>>7) & 0x7F])
def _ber_compressed_int(integer):
r'''BER compressed integer (not an ASN.1 BER, see perlpacktut for
details). Its bytes represent an unsigned integer in base 128,
most significant digit first, with as few digits as possible.
Bit eight (the high bit) is set on each byte except the last.
'''
ber = bytearray(b'')
seven_bits = 0x7F & integer
ber.insert(0, seven_bits) # XXX surely should convert to a char ?
integer >>= 7
while integer > 0:
seven_bits = 0x7F & integer
ber.insert(0, 0x80|seven_bits) # XXX surely should convert to a char ?
integer >>= 7
return ber
def _unshift_ber_int(ba):
r'''Given a bytearray, returns a tuple of (the ber-integer at the
start, and the remainder of the bytearray).
'''
if not len(ba): # 6.7
_warn('_unshift_ber_int: no integer found')
return ((0, b""))
byte = ba.pop(0)
integer = 0
while True:
integer += (byte & 0x7F)
if not (byte & 0x80):
return ((integer, ba))
if not len(ba):
_warn('_unshift_ber_int: no end-of-integer found')
return ((0, ba))
byte = ba.pop(0)
integer <<= 7
def _clean_up_warnings(): # 5.4
# Call this before returning from any publicly callable function
# whenever there's a possibility that a warning might have been printed
# by the function, or by any private functions it might have called.
global _previous_times
global _previous_warning
if _previous_times > 1:
# E:1176, 0: invalid syntax (<string>, line 1176) (syntax-error) ???
# print(' previous message repeated '+str(_previous_times)+' times', file=sys.stderr)
# 6.7
sys.stderr.write(' previous message repeated {0} times\n'.format(_previous_times))
elif _previous_times > 0:
sys.stderr.write(' previous message repeated\n')
_previous_times = 0
_previous_warning = ''
def _warn(s=''):
global _previous_times
global _previous_warning
if s == _previous_warning: # 5.4
_previous_times = _previous_times + 1
else:
_clean_up_warnings()
sys.stderr.write(str(s)+"\n")
_previous_warning = s
def _some_text_event(which_kind=0x01, text=b'some_text', text_encoding='ISO-8859-1'):
if str(type(text)).find("'str'") >= 0: # 6.4 test for back-compatibility
data = bytes(text, encoding=text_encoding)
else:
data = bytes(text)
return b'\xFF'+bytes((which_kind,))+_ber_compressed_int(len(data))+data
def _consistentise_ticks(scores): # 3.6
# used by mix_scores, merge_scores, concatenate_scores
if len(scores) == 1:
return copy.deepcopy(scores)
are_consistent = True
ticks = scores[0][0]
iscore = 1
while iscore < len(scores):
if scores[iscore][0] != ticks:
are_consistent = False
break
iscore += 1
if are_consistent:
return copy.deepcopy(scores)
new_scores = []
iscore = 0
while iscore < len(scores):
score = scores[iscore]
new_scores.append(opus2score(to_millisecs(score2opus(score))))
iscore += 1
return new_scores
###########################################################################
def _decode(trackdata=b'', exclude=None, include=None,
event_callback=None, exclusive_event_callback=None, no_eot_magic=False):
r'''Decodes MIDI track data into an opus-style list of events.
The options:
'exclude' is a list of event types which will be ignored SHOULD BE A SET
'include' (and no exclude), makes exclude a list
of all possible events, /minus/ what include specifies
'event_callback' is a coderef
'exclusive_event_callback' is a coderef
'''
trackdata = bytearray(trackdata)
if exclude == None:
exclude = []
if include == None:
include = []
if include and not exclude:
exclude = All_events
include = set(include)
exclude = set(exclude)
# Pointer = 0; not used here; we eat through the bytearray instead.
event_code = -1; # used for running status
event_count = 0;
events = []
while(len(trackdata)):
# loop while there's anything to analyze ...
eot = False # When True, the event registrar aborts this loop
event_count += 1
E = []
# E for events - we'll feed it to the event registrar at the end.
# Slice off the delta time code, and analyze it
[time, remainder] = _unshift_ber_int(trackdata)
# Now let's see what we can make of the command
first_byte = trackdata.pop(0) & 0xFF
if (first_byte < 0xF0): # It's a MIDI event
if (first_byte & 0x80):
event_code = first_byte
else:
# It wants running status; use last event_code value
trackdata.insert(0, first_byte)
if (event_code == -1):
_warn("Running status not set; Aborting track.")
return []
command = event_code & 0xF0
channel = event_code & 0x0F
if (command == 0xF6): # 0-byte argument
pass
elif (command == 0xC0 or command == 0xD0): # 1-byte argument
parameter = trackdata.pop(0) # could be B
else: # 2-byte argument could be BB or 14-bit
parameter = (trackdata.pop(0), trackdata.pop(0))
#################################################################
# MIDI events
if (command == 0x80):
if 'note_off' in exclude:
continue
E = ['note_off', time, channel, parameter[0], parameter[1]]
elif (command == 0x90):
if 'note_on' in exclude:
continue
E = ['note_on', time, channel, parameter[0], parameter[1]]
elif (command == 0xA0):
if 'key_after_touch' in exclude:
continue
E = ['key_after_touch',time,channel,parameter[0],parameter[1]]
elif (command == 0xB0):
if 'control_change' in exclude:
continue
E = ['control_change',time,channel,parameter[0],parameter[1]]
elif (command == 0xC0):
if 'patch_change' in exclude:
continue
E = ['patch_change', time, channel, parameter]
elif (command == 0xD0):
if 'channel_after_touch' in exclude:
continue
E = ['channel_after_touch', time, channel, parameter]
elif (command == 0xE0):
if 'pitch_wheel_change' in exclude:
continue
E = ['pitch_wheel_change', time, channel,
_read_14_bit(parameter)-0x2000]
else:
_warn("Shouldn't get here; command="+hex(command))
elif (first_byte == 0xFF): # It's a Meta-Event! ##################
#[command, length, remainder] =
# unpack("xCwa*", substr(trackdata, $Pointer, 6));
#Pointer += 6 - len(remainder);
# # Move past JUST the length-encoded.
command = trackdata.pop(0) & 0xFF
[length, trackdata] = _unshift_ber_int(trackdata)
if (command == 0x00):
if (length == 2):
E = ['set_sequence_number',time,_twobytes2int(trackdata)]
else:
_warn('set_sequence_number: length must be 2, not '+str(length))
E = ['set_sequence_number', time, 0]
elif command >= 0x01 and command <= 0x0f: # Text events
# 6.2 take it in bytes; let the user get the right encoding.
# text_str = trackdata[0:length].decode('ascii','ignore')
# text_str = trackdata[0:length].decode('ISO-8859-1')
# 6.4 take it in bytes; let the user get the right encoding.
text_data = bytes(trackdata[0:length]) # 6.4
# Defined text events
if (command == 0x01):
E = ['text_event', time, text_data]
elif (command == 0x02):
E = ['copyright_text_event', time, text_data]
elif (command == 0x03):
E = ['track_name', time, text_data]
elif (command == 0x04):
E = ['instrument_name', time, text_data]
elif (command == 0x05):
E = ['lyric', time, text_data]
elif (command == 0x06):
E = ['marker', time, text_data]
elif (command == 0x07):
E = ['cue_point', time, text_data]
# Reserved but apparently unassigned text events
elif (command == 0x08):
E = ['text_event_08', time, text_data]
elif (command == 0x09):
E = ['text_event_09', time, text_data]
elif (command == 0x0a):
E = ['text_event_0a', time, text_data]
elif (command == 0x0b):
E = ['text_event_0b', time, text_data]
elif (command == 0x0c):
E = ['text_event_0c', time, text_data]
elif (command == 0x0d):
E = ['text_event_0d', time, text_data]
elif (command == 0x0e):
E = ['text_event_0e', time, text_data]
elif (command == 0x0f):
E = ['text_event_0f', time, text_data]
# Now the sticky events -------------------------------------
elif (command == 0x2F):
E = ['end_track', time]
# The code for handling this, oddly, comes LATER,
# in the event registrar.
elif (command == 0x51): # DTime, Microseconds/Crochet
if length != 3:
_warn('set_tempo event, but length='+str(length))
E = ['set_tempo', time,
struct.unpack(">I", b'\x00'+trackdata[0:3])[0]]
elif (command == 0x54):
if length != 5: # DTime, HR, MN, SE, FR, FF
_warn('smpte_offset event, but length='+str(length))
E = ['smpte_offset',time] + list(struct.unpack(">BBBBB",trackdata[0:5]))
elif (command == 0x58):
if length != 4: # DTime, NN, DD, CC, BB
_warn('time_signature event, but length='+str(length))
E = ['time_signature', time]+list(trackdata[0:4])
elif (command == 0x59):
if length != 2: # DTime, SF(signed), MI
_warn('key_signature event, but length='+str(length))
E = ['key_signature',time] + list(struct.unpack(">bB",trackdata[0:2]))
elif (command == 0x7F): # 6.4
E = ['sequencer_specific',time, bytes(trackdata[0:length])]
else:
E = ['raw_meta_event', time, command,
bytes(trackdata[0:length])] # 6.0
#"[uninterpretable meta-event command of length length]"
# DTime, Command, Binary Data
# It's uninterpretable; record it as raw_data.
# Pointer += length; # Now move Pointer
trackdata = trackdata[length:]
######################################################################
elif (first_byte == 0xF0 or first_byte == 0xF7):
# Note that sysexes in MIDI /files/ are different than sysexes
# in MIDI transmissions!! The vast majority of system exclusive
# messages will just use the F0 format. For instance, the
# transmitted message F0 43 12 00 07 F7 would be stored in a
# MIDI file as F0 05 43 12 00 07 F7. As mentioned above, it is
# required to include the F7 at the end so that the reader of the
# MIDI file knows that it has read the entire message. (But the F7
# is omitted if this is a non-final block in a multiblock sysex;
# but the F7 (if there) is counted in the message's declared
# length, so we don't have to think about it anyway.)
#command = trackdata.pop(0)
[length, trackdata] = _unshift_ber_int(trackdata)
if first_byte == 0xF0:
# 20091008 added ISO-8859-1 to get an 8-bit str
# 6.4 return bytes instead
E = ['sysex_f0', time, bytes(trackdata[0:length])]
else:
E = ['sysex_f7', time, bytes(trackdata[0:length])]
trackdata = trackdata[length:]
######################################################################
# Now, the MIDI file spec says:
# <track data> = <MTrk event>+
# <MTrk event> = <delta-time> <event>
# <event> = <MIDI event> | <sysex event> | <meta-event>
# I know that, on the wire, <MIDI event> can include note_on,
# note_off, and all the other 8x to Ex events, AND Fx events
# other than F0, F7, and FF -- namely, <song position msg>,
# <song select msg>, and <tune request>.
#
# Whether these can occur in MIDI files is not clear specified
# from the MIDI file spec. So, I'm going to assume that
# they CAN, in practice, occur. I don't know whether it's
# proper for you to actually emit these into a MIDI file.
elif (first_byte == 0xF2): # DTime, Beats
# <song position msg> ::= F2 <data pair>
E = ['song_position', time, _read_14_bit(trackdata[:2])]
trackdata = trackdata[2:]
elif (first_byte == 0xF3): # <song select msg> ::= F3 <data singlet>
# E = ['song_select', time, struct.unpack('>B',trackdata.pop(0))[0]]
E = ['song_select', time, trackdata[0]]
trackdata = trackdata[1:]
# DTime, Thing (what?! song number? whatever ...)
elif (first_byte == 0xF6): # DTime
E = ['tune_request', time]
# What would a tune request be doing in a MIDI /file/?
#########################################################
# ADD MORE META-EVENTS HERE. TODO:
# f1 -- MTC Quarter Frame Message. One data byte follows
# the Status; it's the time code value, from 0 to 127.
# f8 -- MIDI clock. no data.
# fa -- MIDI start. no data.
# fb -- MIDI continue. no data.
# fc -- MIDI stop. no data.
# fe -- Active sense. no data.
# f4 f5 f9 fd -- unallocated
r'''
elif (first_byte > 0xF0) { # Some unknown kinda F-series event ####
# Here we only produce a one-byte piece of raw data.
# But the encoder for 'raw_data' accepts any length of it.
E = [ 'raw_data',
time, substr(trackdata,Pointer,1) ]
# DTime and the Data (in this case, the one Event-byte)
++Pointer; # itself
'''
elif first_byte > 0xF0: # Some unknown F-series event
# Here we only produce a one-byte piece of raw data.
# E = ['raw_data', time, bytest(trackdata[0])] # 6.4
E = ['raw_data', time, trackdata[0]] # 6.4 6.7
trackdata = trackdata[1:]
else: # Fallthru.
_warn("Aborting track. Command-byte first_byte="+hex(first_byte))
break
# End of the big if-group
######################################################################
# THE EVENT REGISTRAR...
if E and (E[0] == 'end_track'):
# This is the code for exceptional handling of the EOT event.
eot = True
if not no_eot_magic:
if E[1] > 0: # a null text-event to carry the delta-time
E = ['text_event', E[1], '']
else:
E = [] # EOT with a delta-time of 0; ignore it.
if E and not (E[0] in exclude):
#if ( $exclusive_event_callback ):
# &{ $exclusive_event_callback }( @E );
#else:
# &{ $event_callback }( @E ) if $event_callback;
events.append(E)
if eot:
break
# End of the big "Event" while-block
return events
###########################################################################
def _encode(events_lol, unknown_callback=None, never_add_eot=False,
no_eot_magic=False, no_running_status=False, text_encoding='ISO-8859-1'):
# encode an event structure, presumably for writing to a file
# Calling format:
# $data_r = MIDI::Event::encode( \@event_lol, { options } );
# Takes a REFERENCE to an event structure (a LoL)
# Returns an (unblessed) REFERENCE to track data.
# If you want to use this to encode a /single/ event,
# you still have to do it as a reference to an event structure (a LoL)
# that just happens to have just one event. I.e.,
# encode( [ $event ] ) or encode( [ [ 'note_on', 100, 5, 42, 64] ] )
# If you're doing this, consider the never_add_eot track option, as in
# print MIDI ${ encode( [ $event], { 'never_add_eot' => 1} ) };
data = [] # what I'll store the chunks of byte-data in
# This is so my end_track magic won't corrupt the original
events = copy.deepcopy(events_lol)
if not never_add_eot:
# One way or another, tack on an 'end_track'
if events:
last = events[-1]
if not (last[0] == 'end_track'): # no end_track already
if (last[0] == 'text_event' and len(last[2]) == 0):
# 0-length text event at track-end.
if no_eot_magic:
# Exceptional case: don't mess with track-final
# 0-length text_events; just peg on an end_track
events.append(['end_track', 0])
else:
# NORMAL CASE: replace with an end_track, leaving DTime
last[0] = 'end_track'
else:
# last event was neither 0-length text_event nor end_track
events.append(['end_track', 0])
else: # an eventless track!
events = [['end_track', 0],]
# maybe_running_status = not no_running_status # unused? 4.7
last_status = -1
for event_r in (events):
E = copy.deepcopy(event_r)
# otherwise the shifting'd corrupt the original
if not E:
continue
event = E.pop(0)
if not len(event):
continue
dtime = int(E.pop(0))
# print('event='+str(event)+' dtime='+str(dtime))
event_data = ''
if ( # MIDI events -- eligible for running status
event == 'note_on'
or event == 'note_off'
or event == 'control_change'
or event == 'key_after_touch'
or event == 'patch_change'
or event == 'channel_after_touch'
or event == 'pitch_wheel_change' ):
# This block is where we spend most of the time. Gotta be tight.
if (event == 'note_off'):
status = 0x80 | (int(E[0]) & 0x0F)
parameters = struct.pack('>BB', int(E[1])&0x7F, int(E[2])&0x7F)
elif (event == 'note_on'):
status = 0x90 | (int(E[0]) & 0x0F)
parameters = struct.pack('>BB', int(E[1])&0x7F, int(E[2])&0x7F)
elif (event == 'key_after_touch'):
status = 0xA0 | (int(E[0]) & 0x0F)
parameters = struct.pack('>BB', int(E[1])&0x7F, int(E[2])&0x7F)
elif (event == 'control_change'):
status = 0xB0 | (int(E[0]) & 0x0F)
parameters = struct.pack('>BB', int(E[1])&0xFF, int(E[2])&0xFF)
elif (event == 'patch_change'):
status = 0xC0 | (int(E[0]) & 0x0F)
parameters = struct.pack('>B', int(E[1]) & 0xFF)
elif (event == 'channel_after_touch'):
status = 0xD0 | (int(E[0]) & 0x0F)
parameters = struct.pack('>B', int(E[1]) & 0xFF)
elif (event == 'pitch_wheel_change'):
status = 0xE0 | (int(E[0]) & 0x0F)
parameters = _write_14_bit(int(E[1]) + 0x2000)
else:
_warn("BADASS FREAKOUT ERROR 31415!")
# And now the encoding
# w = BER compressed integer (not ASN.1 BER, see perlpacktut for
# details). Its bytes represent an unsigned integer in base 128,
# most significant digit first, with as few digits as possible.
# Bit eight (the high bit) is set on each byte except the last.
data.append(_ber_compressed_int(dtime))
if (status != last_status) or no_running_status:
data.append(struct.pack('>B', status))
data.append(parameters)
last_status = status
continue
else:
# Not a MIDI event.
# All the code in this block could be more efficient,
# but this is not where the code needs to be tight.
# print "zaz $event\n";
last_status = -1
if event == 'raw_meta_event':
event_data = _some_text_event(int(E[0]), E[1], text_encoding)
elif (event == 'set_sequence_number'): # 3.9
event_data = b'\xFF\x00\x02'+_int2twobytes(E[0])
# Text meta-events...
# a case for a dict, I think (pjb) ...
elif (event == 'text_event'):
event_data = _some_text_event(0x01, E[0], text_encoding)
elif (event == 'copyright_text_event'):
event_data = _some_text_event(0x02, E[0], text_encoding)
elif (event == 'track_name'):
event_data = _some_text_event(0x03, E[0], text_encoding)
elif (event == 'instrument_name'):
event_data = _some_text_event(0x04, E[0], text_encoding)
elif (event == 'lyric'):
event_data = _some_text_event(0x05, E[0], text_encoding)
elif (event == 'marker'):
event_data = _some_text_event(0x06, E[0], text_encoding)
elif (event == 'cue_point'):
event_data = _some_text_event(0x07, E[0], text_encoding)
elif (event == 'text_event_08'):
event_data = _some_text_event(0x08, E[0], text_encoding)
elif (event == 'text_event_09'):
event_data = _some_text_event(0x09, E[0], text_encoding)
elif (event == 'text_event_0a'):
event_data = _some_text_event(0x0A, E[0], text_encoding)
elif (event == 'text_event_0b'):
event_data = _some_text_event(0x0B, E[0], text_encoding)
elif (event == 'text_event_0c'):
event_data = _some_text_event(0x0C, E[0], text_encoding)
elif (event == 'text_event_0d'):
event_data = _some_text_event(0x0D, E[0], text_encoding)
elif (event == 'text_event_0e'):
event_data = _some_text_event(0x0E, E[0], text_encoding)
elif (event == 'text_event_0f'):
event_data = _some_text_event(0x0F, E[0], text_encoding)
# End of text meta-events
elif (event == 'end_track'):
event_data = b"\xFF\x2F\x00"
elif (event == 'set_tempo'):
#event_data = struct.pack(">BBwa*", 0xFF, 0x51, 3,
# substr( struct.pack('>I', E[0]), 1, 3))
event_data = b'\xFF\x51\x03'+struct.pack('>I',E[0])[1:]
elif (event == 'smpte_offset'):
# event_data = struct.pack(">BBwBBBBB", 0xFF, 0x54, 5, E[0:5] )
event_data = struct.pack(">BBBbBBBB", 0xFF,0x54,0x05,E[0],E[1],E[2],E[3],E[4])
elif (event == 'time_signature'):
# event_data = struct.pack(">BBwBBBB", 0xFF, 0x58, 4, E[0:4] )
event_data = struct.pack(">BBBbBBB", 0xFF, 0x58, 0x04, E[0],E[1],E[2],E[3])
elif (event == 'key_signature'):
event_data = struct.pack(">BBBbB", 0xFF, 0x59, 0x02, E[0],E[1])
elif (event == 'sequencer_specific'):
# event_data = struct.pack(">BBwa*", 0xFF,0x7F, len(E[0]), E[0])
event_data = _some_text_event(0x7F, E[0], text_encoding)
# End of Meta-events
# Other Things...
elif (event == 'sysex_f0'):
#event_data = struct.pack(">Bwa*", 0xF0, len(E[0]), E[0])
#B=bitstring w=BER-compressed-integer a=null-padded-ascii-str
event_data = bytearray(b'\xF0')+_ber_compressed_int(len(E[0]))+bytearray(E[0])
elif (event == 'sysex_f7'):
#event_data = struct.pack(">Bwa*", 0xF7, len(E[0]), E[0])
event_data = bytearray(b'\xF7')+_ber_compressed_int(len(E[0]))+bytearray(E[0])
elif (event == 'song_position'):
event_data = b"\xF2" + _write_14_bit( E[0] )
elif (event == 'song_select'):
event_data = struct.pack('>BB', 0xF3, E[0] )
elif (event == 'tune_request'):
event_data = b"\xF6"
elif (event == 'raw_data'):
_warn("_encode: raw_data event not supported")
# event_data = E[0]
continue
# End of Other Stuff
else:
# The Big Fallthru
if unknown_callback:
# push(@data, &{ $unknown_callback }( @$event_r ))
pass
else:
_warn("Unknown event: "+str(event))
# To surpress complaint here, just set
# 'unknown_callback' => sub { return () }
continue
#print "Event $event encoded part 2\n"
if str(type(event_data)).find("'str'") >= 0:
event_data = bytearray(event_data.encode('Latin1', 'ignore'))
if len(event_data): # how could $event_data be empty
# data.append(struct.pack('>wa*', dtime, event_data))
# print(' event_data='+str(event_data))
data.append(_ber_compressed_int(dtime)+event_data)
return b''.join(data)
###################################################################################
###################################################################################
###################################################################################
#
# Tegridy MIDI X Module (TMIDI X / tee-midi eks)
# Version 1.0
#
# Based upon and includes the amazing MIDI.py module v.6.7. by Peter Billam
# pjb.com.au
#
# Project Los Angeles
# Tegridy Code 2021
# https://github.com/Tegridy-Code/Project-Los-Angeles
#
###################################################################################
###################################################################################
###################################################################################
import os
import datetime
import copy
from datetime import datetime
import secrets
import random
import pickle
import csv
import tqdm
from itertools import zip_longest
from itertools import groupby
from collections import Counter
from operator import itemgetter
import sys
from abc import ABC, abstractmethod
from difflib import SequenceMatcher as SM
import statistics
import matplotlib.pyplot as plt
###################################################################################
#
# Original TMIDI Tegridy helper functions
#
###################################################################################
def Tegridy_TXT_to_INT_Converter(input_TXT_string, line_by_line_INT_string=True, max_INT = 0):
'''Tegridy TXT to Intergers Converter
Input: Input TXT string in the TMIDI-TXT format
Type of output TXT INT string: line-by-line or one long string
Maximum absolute integer to process. Maximum is inclusive
Default = process all integers. This helps to remove outliers/unwanted ints
Output: List of pure intergers
String of intergers in the specified format: line-by-line or one long string
Number of processed integers
Number of skipped integers
Project Los Angeles
Tegridy Code 2021'''
print('Tegridy TXT to Intergers Converter')
output_INT_list = []
npi = 0
nsi = 0
TXT_List = list(input_TXT_string)
for char in TXT_List:
if max_INT != 0:
if abs(ord(char)) <= max_INT:
output_INT_list.append(ord(char))
npi += 1
else:
nsi += 1
else:
output_INT_list.append(ord(char))
npi += 1
if line_by_line_INT_string:
output_INT_string = '\n'.join([str(elem) for elem in output_INT_list])
else:
output_INT_string = ' '.join([str(elem) for elem in output_INT_list])
print('Converted TXT to INTs:', npi, ' / ', nsi)
return output_INT_list, output_INT_string, npi, nsi
###################################################################################
def Tegridy_INT_to_TXT_Converter(input_INT_list):
'''Tegridy Intergers to TXT Converter
Input: List of intergers in TMIDI-TXT-INT format
Output: Decoded TXT string in TMIDI-TXT format
Project Los Angeles
Tegridy Code 2020'''
output_TXT_string = ''
for i in input_INT_list:
output_TXT_string += chr(int(i))
return output_TXT_string
###################################################################################
def Tegridy_INT_String_to_TXT_Converter(input_INT_String, line_by_line_input=True):
'''Tegridy Intergers String to TXT Converter
Input: List of intergers in TMIDI-TXT-INT-String format
Output: Decoded TXT string in TMIDI-TXT format
Project Los Angeles
Tegridy Code 2020'''
print('Tegridy Intergers String to TXT Converter')
if line_by_line_input:
input_string = input_INT_String.split('\n')
else:
input_string = input_INT_String.split(' ')
output_TXT_string = ''
for i in input_string:
try:
output_TXT_string += chr(abs(int(i)))
except:
print('Bad note:', i)
continue
print('Done!')
return output_TXT_string
###################################################################################
def Tegridy_SONG_to_MIDI_Converter(SONG,
output_signature = 'Tegridy TMIDI Module',
track_name = 'Composition Track',
number_of_ticks_per_quarter = 425,
list_of_MIDI_patches = [0, 24, 32, 40, 42, 46, 56, 71, 73, 0, 0, 0, 0, 0, 0, 0],
output_file_name = 'TMIDI-Composition',
text_encoding='ISO-8859-1',
verbose=True):
'''Tegridy SONG to MIDI Converter
Input: Input SONG in TMIDI SONG/MIDI.py Score format
Output MIDI Track 0 name / MIDI Signature
Output MIDI Track 1 name / Composition track name
Number of ticks per quarter for the output MIDI
List of 16 MIDI patch numbers for output MIDI. Def. is MuseNet compatible patches.
Output file name w/o .mid extension.
Optional text encoding if you are working with text_events/lyrics. This is especially useful for Karaoke. Please note that anything but ISO-8859-1 is a non-standard way of encoding text_events according to MIDI specs.
Output: MIDI File
Detailed MIDI stats
Project Los Angeles
Tegridy Code 2020'''
if verbose:
print('Converting to MIDI. Please stand-by...')
output_header = [number_of_ticks_per_quarter,
[['track_name', 0, bytes(output_signature, text_encoding)]]]
patch_list = [['patch_change', 0, 0, list_of_MIDI_patches[0]],
['patch_change', 0, 1, list_of_MIDI_patches[1]],
['patch_change', 0, 2, list_of_MIDI_patches[2]],
['patch_change', 0, 3, list_of_MIDI_patches[3]],
['patch_change', 0, 4, list_of_MIDI_patches[4]],
['patch_change', 0, 5, list_of_MIDI_patches[5]],
['patch_change', 0, 6, list_of_MIDI_patches[6]],
['patch_change', 0, 7, list_of_MIDI_patches[7]],
['patch_change', 0, 8, list_of_MIDI_patches[8]],
['patch_change', 0, 9, list_of_MIDI_patches[9]],
['patch_change', 0, 10, list_of_MIDI_patches[10]],
['patch_change', 0, 11, list_of_MIDI_patches[11]],
['patch_change', 0, 12, list_of_MIDI_patches[12]],
['patch_change', 0, 13, list_of_MIDI_patches[13]],
['patch_change', 0, 14, list_of_MIDI_patches[14]],
['patch_change', 0, 15, list_of_MIDI_patches[15]],
['track_name', 0, bytes(track_name, text_encoding)]]
output = output_header + [patch_list + SONG]
midi_data = score2midi(output, text_encoding)
detailed_MIDI_stats = score2stats(output)
with open(output_file_name + '.mid', 'wb') as midi_file:
midi_file.write(midi_data)
midi_file.close()
if verbose:
print('Done! Enjoy! :)')
return detailed_MIDI_stats
###################################################################################
def Tegridy_ms_SONG_to_MIDI_Converter(SONG,
output_signature = 'Tegridy TMIDI Module',
track_name = 'Composition Track',
list_of_MIDI_patches = [0, 24, 32, 40, 42, 46, 56, 71, 73, 0, 0, 0, 0, 0, 0, 0],
output_file_name = 'TMIDI-Composition',
text_encoding='ISO-8859-1',
verbose=True):
'''Tegridy milisecond SONG to MIDI Converter
Input: Input ms SONG in TMIDI ms SONG/MIDI.py ms Score format
Output MIDI Track 0 name / MIDI Signature
Output MIDI Track 1 name / Composition track name
List of 16 MIDI patch numbers for output MIDI. Def. is MuseNet compatible patches.
Output file name w/o .mid extension.
Optional text encoding if you are working with text_events/lyrics. This is especially useful for Karaoke. Please note that anything but ISO-8859-1 is a non-standard way of encoding text_events according to MIDI specs.
Output: MIDI File
Detailed MIDI stats
Project Los Angeles
Tegridy Code 2020'''
if verbose:
print('Converting to MIDI. Please stand-by...')
output_header = [1000,
[['set_tempo', 0, 1000000],
['time_signature', 0, 4, 2, 24, 8],
['track_name', 0, bytes(output_signature, text_encoding)]]]
patch_list = [['patch_change', 0, 0, list_of_MIDI_patches[0]],
['patch_change', 0, 1, list_of_MIDI_patches[1]],
['patch_change', 0, 2, list_of_MIDI_patches[2]],
['patch_change', 0, 3, list_of_MIDI_patches[3]],
['patch_change', 0, 4, list_of_MIDI_patches[4]],
['patch_change', 0, 5, list_of_MIDI_patches[5]],
['patch_change', 0, 6, list_of_MIDI_patches[6]],
['patch_change', 0, 7, list_of_MIDI_patches[7]],
['patch_change', 0, 8, list_of_MIDI_patches[8]],
['patch_change', 0, 9, list_of_MIDI_patches[9]],
['patch_change', 0, 10, list_of_MIDI_patches[10]],
['patch_change', 0, 11, list_of_MIDI_patches[11]],
['patch_change', 0, 12, list_of_MIDI_patches[12]],
['patch_change', 0, 13, list_of_MIDI_patches[13]],
['patch_change', 0, 14, list_of_MIDI_patches[14]],
['patch_change', 0, 15, list_of_MIDI_patches[15]],
['track_name', 0, bytes(track_name, text_encoding)]]
output = output_header + [patch_list + SONG]
midi_data = score2midi(output, text_encoding)
detailed_MIDI_stats = score2stats(output)
with open(output_file_name + '.mid', 'wb') as midi_file:
midi_file.write(midi_data)
midi_file.close()
if verbose:
print('Done! Enjoy! :)')
return detailed_MIDI_stats
###################################################################################
def hsv_to_rgb(h, s, v):
if s == 0.0:
return v, v, v
i = int(h*6.0)
f = (h*6.0) - i
p = v*(1.0 - s)
q = v*(1.0 - s*f)
t = v*(1.0 - s*(1.0-f))
i = i%6
return [(v, t, p), (q, v, p), (p, v, t), (p, q, v), (t, p, v), (v, p, q)][i]
def generate_colors(n):
return [hsv_to_rgb(i/n, 1, 1) for i in range(n)]
def add_arrays(a, b):
return [sum(pair) for pair in zip(a, b)]
#-------------------------------------------------------------------------------
def plot_ms_SONG(ms_song,
preview_length_in_notes=0,
block_lines_times_list = None,
plot_title='ms Song',
max_num_colors=129,
drums_color_num=128,
plot_size=(11,4),
note_height = 0.75,
show_grid_lines=False,
return_plt = False
):
'''Tegridy ms SONG plotter/vizualizer'''
notes = [s for s in ms_song if s[0] == 'note']
if (len(max(notes, key=len)) != 7) and (len(min(notes, key=len)) != 7):
print('The song notes do not have patches information')
print('Ploease add patches to the notes in the song')
else:
start_times = [s[1] / 1000 for s in notes]
durations = [s[2] / 1000 for s in notes]
pitches = [s[4] for s in notes]
patches = [s[6] for s in notes]
colors = generate_colors(max_num_colors)
colors[drums_color_num] = (1, 1, 1)
pbl = notes[preview_length_in_notes][1] / 1000
fig, ax = plt.subplots(figsize=plot_size)
#fig, ax = plt.subplots()
# Create a rectangle for each note with color based on patch number
for start, duration, pitch, patch in zip(start_times, durations, pitches, patches):
rect = plt.Rectangle((start, pitch), duration, note_height, facecolor=colors[patch])
ax.add_patch(rect)
# Set the limits of the plot
ax.set_xlim([min(start_times), max(add_arrays(start_times, durations))])
ax.set_ylim([min(pitches)-1, max(pitches)+1])
# Set the background color to black
ax.set_facecolor('black')
fig.patch.set_facecolor('white')
if preview_length_in_notes > 0:
ax.axvline(x=pbl, c='white')
if block_lines_times_list:
for bl in block_lines_times_list:
ax.axvline(x=bl, c='white')
if show_grid_lines:
ax.grid(color='white')
plt.xlabel('Time (ms)', c='black')
plt.ylabel('Pitch', c='black')
plt.title(plot_title)
if return_plt:
return plt
plt.show()
###################################################################################
def Tegridy_SONG_to_Full_MIDI_Converter(SONG,
output_signature = 'Tegridy TMIDI Module',
track_name = 'Composition Track',
number_of_ticks_per_quarter = 1000,
output_file_name = 'TMIDI-Composition',
text_encoding='ISO-8859-1',
verbose=True):
'''Tegridy SONG to Full MIDI Converter
Input: Input SONG in Full TMIDI SONG/MIDI.py Score format
Output MIDI Track 0 name / MIDI Signature
Output MIDI Track 1 name / Composition track name
Number of ticks per quarter for the output MIDI
Output file name w/o .mid extension.
Optional text encoding if you are working with text_events/lyrics. This is especially useful for Karaoke. Please note that anything but ISO-8859-1 is a non-standard way of encoding text_events according to MIDI specs.
Output: MIDI File
Detailed MIDI stats
Project Los Angeles
Tegridy Code 2023'''
if verbose:
print('Converting to MIDI. Please stand-by...')
output_header = [number_of_ticks_per_quarter,
[['set_tempo', 0, 1000000],
['track_name', 0, bytes(output_signature, text_encoding)]]]
song_track = [['track_name', 0, bytes(track_name, text_encoding)]]
output = output_header + [song_track + SONG]
midi_data = score2midi(output, text_encoding)
detailed_MIDI_stats = score2stats(output)
with open(output_file_name + '.mid', 'wb') as midi_file:
midi_file.write(midi_data)
midi_file.close()
if verbose:
print('Done! Enjoy! :)')
return detailed_MIDI_stats
###################################################################################
def Tegridy_File_Time_Stamp(input_file_name='File_Created_on_', ext = ''):
'''Tegridy File Time Stamp
Input: Full path and file name without extention
File extension
Output: File name string with time-stamp and extension (time-stamped file name)
Project Los Angeles
Tegridy Code 2021'''
print('Time-stamping output file...')
now = ''
now_n = str(datetime.now())
now_n = now_n.replace(' ', '_')
now_n = now_n.replace(':', '_')
now = now_n.replace('.', '_')
fname = input_file_name + str(now) + ext
return(fname)
###################################################################################
def Tegridy_Any_Pickle_File_Writer(Data, input_file_name='TMIDI_Pickle_File'):
'''Tegridy Pickle File Writer
Input: Data to write (I.e. a list)
Full path and file name without extention
Output: Named Pickle file
Project Los Angeles
Tegridy Code 2021'''
print('Tegridy Pickle File Writer')
full_path_to_output_dataset_to = input_file_name + '.pickle'
if os.path.exists(full_path_to_output_dataset_to):
os.remove(full_path_to_output_dataset_to)
print('Removing old Dataset...')
else:
print("Creating new Dataset file...")
with open(full_path_to_output_dataset_to, 'wb') as filehandle:
# store the data as binary data stream
pickle.dump(Data, filehandle, protocol=pickle.HIGHEST_PROTOCOL)
print('Dataset was saved as:', full_path_to_output_dataset_to)
print('Task complete. Enjoy! :)')
###################################################################################
def Tegridy_Any_Pickle_File_Reader(input_file_name='TMIDI_Pickle_File', ext='.pickle'):
'''Tegridy Pickle File Loader
Input: Full path and file name without extention
File extension if different from default .pickle
Output: Standard Python 3 unpickled data object
Project Los Angeles
Tegridy Code 2021'''
print('Tegridy Pickle File Loader')
print('Loading the pickle file. Please wait...')
with open(input_file_name + ext, 'rb') as pickle_file:
content = pickle.load(pickle_file)
return content
###################################################################################
# TMIDI X Code is below
###################################################################################
def Optimus_MIDI_TXT_Processor(MIDI_file,
line_by_line_output=True,
chordify_TXT=False,
dataset_MIDI_events_time_denominator=1,
output_velocity=True,
output_MIDI_channels = False,
MIDI_channel=0,
MIDI_patch=[0, 1],
char_offset = 30000,
transpose_by = 0,
flip=False,
melody_conditioned_encoding=False,
melody_pitch_baseline = 0,
number_of_notes_to_sample = -1,
sampling_offset_from_start = 0,
karaoke=False,
karaoke_language_encoding='utf-8',
song_name='Song',
perfect_timings=False,
musenet_encoding=False,
transform=0,
zero_token=False,
reset_timings=False):
'''Project Los Angeles
Tegridy Code 2021'''
###########
debug = False
ev = 0
chords_list_final = []
chords_list = []
events_matrix = []
melody = []
melody1 = []
itrack = 1
min_note = 0
max_note = 0
ev = 0
patch = 0
score = []
rec_event = []
txt = ''
txtc = ''
chords = []
melody_chords = []
karaoke_events_matrix = []
karaokez = []
sample = 0
start_sample = 0
bass_melody = []
INTS = []
bints = 0
###########
def list_average(num):
sum_num = 0
for t in num:
sum_num = sum_num + t
avg = sum_num / len(num)
return avg
###########
#print('Loading MIDI file...')
midi_file = open(MIDI_file, 'rb')
if debug: print('Processing File:', file_address)
try:
opus = midi2opus(midi_file.read())
except:
print('Problematic MIDI. Skipping...')
print('File name:', MIDI_file)
midi_file.close()
return txt, melody, chords
midi_file.close()
score1 = to_millisecs(opus)
score2 = opus2score(score1)
# score2 = opus2score(opus) # TODO Improve score timings when it will be possible.
if MIDI_channel == 16: # Process all MIDI channels
score = score2
if MIDI_channel >= 0 and MIDI_channel <= 15: # Process only a selected single MIDI channel
score = grep(score2, [MIDI_channel])
if MIDI_channel == -1: # Process all channels except drums (except channel 9)
score = grep(score2, [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15])
#print('Reading all MIDI events from the MIDI file...')
while itrack < len(score):
for event in score[itrack]:
if perfect_timings:
if event[0] == 'note':
event[1] = round(event[1], -1)
event[2] = round(event[2], -1)
if event[0] == 'text_event' or event[0] == 'lyric' or event[0] == 'note':
if perfect_timings:
event[1] = round(event[1], -1)
karaokez.append(event)
if event[0] == 'text_event' or event[0] == 'lyric':
if perfect_timings:
event[1] = round(event[1], -1)
try:
event[2] = str(event[2].decode(karaoke_language_encoding, 'replace')).replace('/', '').replace(' ', '').replace('\\', '')
except:
event[2] = str(event[2]).replace('/', '').replace(' ', '').replace('\\', '')
continue
karaoke_events_matrix.append(event)
if event[0] == 'patch_change':
patch = event[3]
if event[0] == 'note' and patch in MIDI_patch:
if len(event) == 6: # Checking for bad notes...
eve = copy.deepcopy(event)
eve[1] = int(event[1] / dataset_MIDI_events_time_denominator)
eve[2] = int(event[2] / dataset_MIDI_events_time_denominator)
eve[4] = int(event[4] + transpose_by)
if flip == True:
eve[4] = int(127 - (event[4] + transpose_by))
if number_of_notes_to_sample > -1:
if sample <= number_of_notes_to_sample:
if start_sample >= sampling_offset_from_start:
events_matrix.append(eve)
sample += 1
ev += 1
else:
start_sample += 1
else:
events_matrix.append(eve)
ev += 1
start_sample += 1
itrack +=1 # Going to next track...
#print('Doing some heavy pythonic sorting...Please stand by...')
fn = os.path.basename(MIDI_file)
song_name = song_name.replace(' ', '_').replace('=', '_').replace('\'', '-')
if song_name == 'Song':
sng_name = fn.split('.')[0].replace(' ', '_').replace('=', '_').replace('\'', '-')
song_name = sng_name
# Zero token
if zero_token:
txt += chr(char_offset) + chr(char_offset)
if output_MIDI_channels:
txt += chr(char_offset)
if output_velocity:
txt += chr(char_offset) + chr(char_offset)
else:
txt += chr(char_offset)
txtc += chr(char_offset) + chr(char_offset)
if output_MIDI_channels:
txtc += chr(char_offset)
if output_velocity:
txtc += chr(char_offset) + chr(char_offset)
else:
txtc += chr(char_offset)
txt += '=' + song_name + '_with_' + str(len(events_matrix)-1) + '_notes'
txtc += '=' + song_name + '_with_' + str(len(events_matrix)-1) + '_notes'
else:
# Song stamp
txt += 'SONG=' + song_name + '_with_' + str(len(events_matrix)-1) + '_notes'
txtc += 'SONG=' + song_name + '_with_' + str(len(events_matrix)-1) + '_notes'
if line_by_line_output:
txt += chr(10)
txtc += chr(10)
else:
txt += chr(32)
txtc += chr(32)
#print('Sorting input by start time...')
events_matrix.sort(key=lambda x: x[1]) # Sorting input by start time
#print('Timings converter')
if reset_timings:
ev_matrix = Tegridy_Timings_Converter(events_matrix)[0]
else:
ev_matrix = events_matrix
chords.extend(ev_matrix)
#print(chords)
#print('Extracting melody...')
melody_list = []
#print('Grouping by start time. This will take a while...')
values = set(map(lambda x:x[1], ev_matrix)) # Non-multithreaded function version just in case
groups = [[y for y in ev_matrix if y[1]==x and len(y) == 6] for x in values] # Grouping notes into chords while discarting bad notes...
#print('Sorting events...')
for items in groups:
items.sort(reverse=True, key=lambda x: x[4]) # Sorting events by pitch
if melody_conditioned_encoding: items[0][3] = 0 # Melody should always bear MIDI Channel 0 for code to work
melody_list.append(items[0]) # Creating final melody list
melody_chords.append(items) # Creating final chords list
bass_melody.append(items[-1]) # Creating final bass melody list
# [WIP] Melody-conditioned chords list
if melody_conditioned_encoding == True:
if not karaoke:
previous_event = copy.deepcopy(melody_chords[0][0])
for ev in melody_chords:
hp = True
ev.sort(reverse=False, key=lambda x: x[4]) # Sorting chord events by pitch
for event in ev:
# Computing events details
start_time = int(abs(event[1] - previous_event[1]))
duration = int(previous_event[2])
if hp == True:
if int(previous_event[4]) >= melody_pitch_baseline:
channel = int(0)
hp = False
else:
channel = int(previous_event[3]+1)
hp = False
else:
channel = int(previous_event[3]+1)
hp = False
pitch = int(previous_event[4])
velocity = int(previous_event[5])
# Writing INTergerS...
try:
INTS.append([(start_time)+char_offset, (duration)+char_offset, channel+char_offset, pitch+char_offset, velocity+char_offset])
except:
bints += 1
# Converting to TXT if possible...
try:
txtc += str(chr(start_time + char_offset))
txtc += str(chr(duration + char_offset))
txtc += str(chr(pitch + char_offset))
if output_velocity:
txtc += str(chr(velocity + char_offset))
if output_MIDI_channels:
txtc += str(chr(channel + char_offset))
if line_by_line_output:
txtc += chr(10)
else:
txtc += chr(32)
previous_event = copy.deepcopy(event)
except:
# print('Problematic MIDI event! Skipping...')
continue
if not line_by_line_output:
txtc += chr(10)
txt = txtc
chords = melody_chords
# Default stuff (not melody-conditioned/not-karaoke)
else:
if not karaoke:
melody_chords.sort(reverse=False, key=lambda x: x[0][1])
mel_chords = []
for mc in melody_chords:
mel_chords.extend(mc)
if transform != 0:
chords = Tegridy_Transform(mel_chords, transform)
else:
chords = mel_chords
# TXT Stuff
previous_event = copy.deepcopy(chords[0])
for event in chords:
# Computing events details
start_time = int(abs(event[1] - previous_event[1]))
duration = int(previous_event[2])
channel = int(previous_event[3])
pitch = int(previous_event[4] + transpose_by)
if flip == True:
pitch = 127 - int(previous_event[4] + transpose_by)
velocity = int(previous_event[5])
# Writing INTergerS...
try:
INTS.append([(start_time)+char_offset, (duration)+char_offset, channel+char_offset, pitch+char_offset, velocity+char_offset])
except:
bints += 1
# Converting to TXT if possible...
try:
txt += str(chr(start_time + char_offset))
txt += str(chr(duration + char_offset))
txt += str(chr(pitch + char_offset))
if output_velocity:
txt += str(chr(velocity + char_offset))
if output_MIDI_channels:
txt += str(chr(channel + char_offset))
if chordify_TXT == True and int(event[1] - previous_event[1]) == 0:
txt += ''
else:
if line_by_line_output:
txt += chr(10)
else:
txt += chr(32)
previous_event = copy.deepcopy(event)
except:
# print('Problematic MIDI event. Skipping...')
continue
if not line_by_line_output:
txt += chr(10)
# Karaoke stuff
if karaoke:
melody_chords.sort(reverse=False, key=lambda x: x[0][1])
mel_chords = []
for mc in melody_chords:
mel_chords.extend(mc)
if transform != 0:
chords = Tegridy_Transform(mel_chords, transform)
else:
chords = mel_chords
previous_event = copy.deepcopy(chords[0])
for event in chords:
# Computing events details
start_time = int(abs(event[1] - previous_event[1]))
duration = int(previous_event[2])
channel = int(previous_event[3])
pitch = int(previous_event[4] + transpose_by)
velocity = int(previous_event[5])
# Converting to TXT
txt += str(chr(start_time + char_offset))
txt += str(chr(duration + char_offset))
txt += str(chr(pitch + char_offset))
txt += str(chr(velocity + char_offset))
txt += str(chr(channel + char_offset))
if start_time > 0:
for k in karaoke_events_matrix:
if event[1] == k[1]:
txt += str('=')
txt += str(k[2])
break
if line_by_line_output:
txt += chr(10)
else:
txt += chr(32)
previous_event = copy.deepcopy(event)
if not line_by_line_output:
txt += chr(10)
# Final processing code...
# =======================================================================
# Helper aux/backup function for Karaoke
karaokez.sort(reverse=False, key=lambda x: x[1])
# MuseNet sorting
if musenet_encoding and not melody_conditioned_encoding and not karaoke:
chords.sort(key=lambda x: (x[1], x[3]))
# Final melody sort
melody_list.sort()
# auxs for future use
aux1 = [None]
aux2 = [None]
return txt, melody_list, chords, bass_melody, karaokez, INTS, aux1, aux2 # aux1 and aux2 are not used atm
###################################################################################
def Optimus_TXT_to_Notes_Converter(Optimus_TXT_String,
line_by_line_dataset = True,
has_velocities = True,
has_MIDI_channels = True,
dataset_MIDI_events_time_denominator = 1,
char_encoding_offset = 30000,
save_only_first_composition = True,
simulate_velocity=True,
karaoke=False,
zero_token=False):
'''Project Los Angeles
Tegridy Code 2020'''
print('Tegridy Optimus TXT to Notes Converter')
print('Converting TXT to Notes list...Please wait...')
song_name = ''
if line_by_line_dataset:
input_string = Optimus_TXT_String.split('\n')
else:
input_string = Optimus_TXT_String.split(' ')
if line_by_line_dataset:
name_string = Optimus_TXT_String.split('\n')[0].split('=')
else:
name_string = Optimus_TXT_String.split(' ')[0].split('=')
# Zero token
zt = ''
zt += chr(char_encoding_offset) + chr(char_encoding_offset)
if has_MIDI_channels:
zt += chr(char_encoding_offset)
if has_velocities:
zt += chr(char_encoding_offset) + chr(char_encoding_offset)
else:
zt += chr(char_encoding_offset)
if zero_token:
if name_string[0] == zt:
song_name = name_string[1]
else:
if name_string[0] == 'SONG':
song_name = name_string[1]
output_list = []
st = 0
for i in range(2, len(input_string)-1):
if save_only_first_composition:
if zero_token:
if input_string[i].split('=')[0] == zt:
song_name = name_string[1]
break
else:
if input_string[i].split('=')[0] == 'SONG':
song_name = name_string[1]
break
try:
istring = input_string[i]
if has_MIDI_channels == False:
step = 4
if has_MIDI_channels == True:
step = 5
if has_velocities == False:
step -= 1
st += int(ord(istring[0]) - char_encoding_offset) * dataset_MIDI_events_time_denominator
if not karaoke:
for s in range(0, len(istring), step):
if has_MIDI_channels==True:
if step > 3 and len(istring) > 2:
out = []
out.append('note')
out.append(st) # Start time
out.append(int(ord(istring[s+1]) - char_encoding_offset) * dataset_MIDI_events_time_denominator) # Duration
if has_velocities:
out.append(int(ord(istring[s+4]) - char_encoding_offset)) # Channel
else:
out.append(int(ord(istring[s+3]) - char_encoding_offset)) # Channel
out.append(int(ord(istring[s+2]) - char_encoding_offset)) # Pitch
if simulate_velocity:
if s == 0:
sim_vel = int(ord(istring[s+2]) - char_encoding_offset)
out.append(sim_vel) # Simulated Velocity (= highest note's pitch)
else:
out.append(int(ord(istring[s+3]) - char_encoding_offset)) # Velocity
if has_MIDI_channels==False:
if step > 3 and len(istring) > 2:
out = []
out.append('note')
out.append(st) # Start time
out.append(int(ord(istring[s+1]) - char_encoding_offset) * dataset_MIDI_events_time_denominator) # Duration
out.append(0) # Channel
out.append(int(ord(istring[s+2]) - char_encoding_offset)) # Pitch
if simulate_velocity:
if s == 0:
sim_vel = int(ord(istring[s+2]) - char_encoding_offset)
out.append(sim_vel) # Simulated Velocity (= highest note's pitch)
else:
out.append(int(ord(istring[s+3]) - char_encoding_offset)) # Velocity
if step == 3 and len(istring) > 2:
out = []
out.append('note')
out.append(st) # Start time
out.append(int(ord(istring[s+1]) - char_encoding_offset) * dataset_MIDI_events_time_denominator) # Duration
out.append(0) # Channel
out.append(int(ord(istring[s+2]) - char_encoding_offset)) # Pitch
out.append(int(ord(istring[s+2]) - char_encoding_offset)) # Velocity = Pitch
output_list.append(out)
if karaoke:
try:
out = []
out.append('note')
out.append(st) # Start time
out.append(int(ord(istring[1]) - char_encoding_offset) * dataset_MIDI_events_time_denominator) # Duration
out.append(int(ord(istring[4]) - char_encoding_offset)) # Channel
out.append(int(ord(istring[2]) - char_encoding_offset)) # Pitch
if simulate_velocity:
if s == 0:
sim_vel = int(ord(istring[2]) - char_encoding_offset)
out.append(sim_vel) # Simulated Velocity (= highest note's pitch)
else:
out.append(int(ord(istring[3]) - char_encoding_offset)) # Velocity
output_list.append(out)
out = []
if istring.split('=')[1] != '':
out.append('lyric')
out.append(st)
out.append(istring.split('=')[1])
output_list.append(out)
except:
continue
except:
print('Bad note string:', istring)
continue
# Simple error control just in case
S = []
for x in output_list:
if len(x) == 6 or len(x) == 3:
S.append(x)
output_list.clear()
output_list = copy.deepcopy(S)
print('Task complete! Enjoy! :)')
return output_list, song_name
###################################################################################
def Optimus_Data2TXT_Converter(data,
dataset_time_denominator=1,
transpose_by = 0,
char_offset = 33,
line_by_line_output = True,
output_velocity = False,
output_MIDI_channels = False):
'''Input: data as a flat chords list of flat chords lists
Output: TXT string
INTs
Project Los Angeles
Tegridy Code 2021'''
txt = ''
TXT = ''
quit = False
counter = 0
INTs = []
INTs_f = []
for d in tqdm.tqdm(sorted(data)):
if quit == True:
break
txt = 'SONG=' + str(counter)
counter += 1
if line_by_line_output:
txt += chr(10)
else:
txt += chr(32)
INTs = []
# TXT Stuff
previous_event = copy.deepcopy(d[0])
for event in sorted(d):
# Computing events details
start_time = int(abs(event[1] - previous_event[1]) / dataset_time_denominator)
duration = int(previous_event[2] / dataset_time_denominator)
channel = int(previous_event[3])
pitch = int(previous_event[4] + transpose_by)
velocity = int(previous_event[5])
INTs.append([start_time, duration, pitch])
# Converting to TXT if possible...
try:
txt += str(chr(start_time + char_offset))
txt += str(chr(duration + char_offset))
txt += str(chr(pitch + char_offset))
if output_velocity:
txt += str(chr(velocity + char_offset))
if output_MIDI_channels:
txt += str(chr(channel + char_offset))
if line_by_line_output:
txt += chr(10)
else:
txt += chr(32)
previous_event = copy.deepcopy(event)
except KeyboardInterrupt:
quit = True
break
except:
print('Problematic MIDI data. Skipping...')
continue
if not line_by_line_output:
txt += chr(10)
TXT += txt
INTs_f.extend(INTs)
return TXT, INTs_f
###################################################################################
def Optimus_Squash(chords_list, simulate_velocity=True, mono_compression=False):
'''Input: Flat chords list
Simulate velocity or not
Mono-compression enabled or disabled
Default is almost lossless 25% compression, otherwise, lossy 50% compression (mono-compression)
Output: Squashed chords list
Resulting compression level
Please note that if drums are passed through as is
Project Los Angeles
Tegridy Code 2021'''
output = []
ptime = 0
vel = 0
boost = 15
stptc = []
ocount = 0
rcount = 0
for c in chords_list:
cc = copy.deepcopy(c)
ocount += 1
if [cc[1], cc[3], (cc[4] % 12) + 60] not in stptc:
stptc.append([cc[1], cc[3], (cc[4] % 12) + 60])
if cc[3] != 9:
cc[4] = (c[4] % 12) + 60
if simulate_velocity and c[1] != ptime:
vel = c[4] + boost
if cc[3] != 9:
cc[5] = vel
if mono_compression:
if c[1] != ptime:
output.append(cc)
rcount += 1
else:
output.append(cc)
rcount += 1
ptime = c[1]
output.sort(key=lambda x: (x[1], x[4]))
comp_level = 100 - int((rcount * 100) / ocount)
return output, comp_level
###################################################################################
def Optimus_Signature(chords_list, calculate_full_signature=False):
'''Optimus Signature
---In the name of the search for a perfect score slice signature---
Input: Flat chords list to evaluate
Output: Full Optimus Signature as a list
Best/recommended Optimus Signature as a list
Project Los Angeles
Tegridy Code 2021'''
# Pitches
## StDev
if calculate_full_signature:
psd = statistics.stdev([int(y[4]) for y in chords_list])
else:
psd = 0
## Median
pmh = statistics.median_high([int(y[4]) for y in chords_list])
pm = statistics.median([int(y[4]) for y in chords_list])
pml = statistics.median_low([int(y[4]) for y in chords_list])
## Mean
if calculate_full_signature:
phm = statistics.harmonic_mean([int(y[4]) for y in chords_list])
else:
phm = 0
# Durations
dur = statistics.median([int(y[2]) for y in chords_list])
# Velocities
vel = statistics.median([int(y[5]) for y in chords_list])
# Beats
mtds = statistics.median([int(abs(chords_list[i-1][1]-chords_list[i][1])) for i in range(1, len(chords_list))])
if calculate_full_signature:
hmtds = statistics.harmonic_mean([int(abs(chords_list[i-1][1]-chords_list[i][1])) for i in range(1, len(chords_list))])
else:
hmtds = 0
# Final Optimus signatures
full_Optimus_signature = [round(psd), round(pmh), round(pm), round(pml), round(phm), round(dur), round(vel), round(mtds), round(hmtds)]
######################## PStDev PMedianH PMedian PMedianL PHarmoMe Duration Velocity Beat HarmoBeat
best_Optimus_signature = [round(pmh), round(pm), round(pml), round(dur, -1), round(vel, -1), round(mtds, -1)]
######################## PMedianH PMedian PMedianL Duration Velocity Beat
# Return...
return full_Optimus_signature, best_Optimus_signature
###################################################################################
#
# TMIDI 2.0 Helper functions
#
###################################################################################
def Tegridy_FastSearch(needle, haystack, randomize = False):
'''
Input: Needle iterable
Haystack iterable
Randomize search range (this prevents determinism)
Output: Start index of the needle iterable in a haystack iterable
If nothing found, -1 is returned
Project Los Angeles
Tegridy Code 2021'''
need = copy.deepcopy(needle)
try:
if randomize:
idx = haystack.index(need, secrets.randbelow(len(haystack)-len(need)))
else:
idx = haystack.index(need)
except KeyboardInterrupt:
return -1
except:
return -1
return idx
###################################################################################
def Tegridy_Chord_Match(chord1, chord2, match_type=2):
'''Tegridy Chord Match
Input: Two chords to evaluate
Match type: 2 = duration, channel, pitch, velocity
3 = channel, pitch, velocity
4 = pitch, velocity
5 = velocity
Output: Match rating (0-100)
NOTE: Match rating == -1 means identical source chords
NOTE: Match rating == 100 means mutual shortest chord
Project Los Angeles
Tegridy Code 2021'''
match_rating = 0
if chord1 == []:
return 0
if chord2 == []:
return 0
if chord1 == chord2:
return -1
else:
zipped_pairs = list(zip(chord1, chord2))
zipped_diff = abs(len(chord1) - len(chord2))
short_match = [False]
for pair in zipped_pairs:
cho1 = ' '.join([str(y) for y in pair[0][match_type:]])
cho2 = ' '.join([str(y) for y in pair[1][match_type:]])
if cho1 == cho2:
short_match.append(True)
else:
short_match.append(False)
if True in short_match:
return 100
pairs_ratings = []
for pair in zipped_pairs:
cho1 = ' '.join([str(y) for y in pair[0][match_type:]])
cho2 = ' '.join([str(y) for y in pair[1][match_type:]])
pairs_ratings.append(SM(None, cho1, cho2).ratio())
match_rating = sum(pairs_ratings) / len(pairs_ratings) * 100
return match_rating
###################################################################################
def Tegridy_Last_Chord_Finder(chords_list):
'''Tegridy Last Chord Finder
Input: Flat chords list
Output: Last detected chord of the chords list
Last chord start index in the original chords list
First chord end index in the original chords list
Project Los Angeles
Tegridy Code 2021'''
chords = []
cho = []
ptime = 0
i = 0
pc_idx = 0
fc_idx = 0
chords_list.sort(reverse=False, key=lambda x: x[1])
for cc in chords_list:
if cc[1] == ptime:
cho.append(cc)
ptime = cc[1]
else:
if pc_idx == 0:
fc_idx = chords_list.index(cc)
pc_idx = chords_list.index(cc)
chords.append(cho)
cho = []
cho.append(cc)
ptime = cc[1]
i += 1
if cho != []:
chords.append(cho)
i += 1
return chords_list[pc_idx:], pc_idx, fc_idx
###################################################################################
def Tegridy_Chords_Generator(chords_list, shuffle_pairs = True, remove_single_notes=False):
'''Tegridy Score Chords Pairs Generator
Input: Flat chords list
Shuffle pairs (recommended)
Output: List of chords
Average time(ms) per chord
Average time(ms) per pitch
Average chords delta time
Average duration
Average channel
Average pitch
Average velocity
Project Los Angeles
Tegridy Code 2021'''
chords = []
cho = []
i = 0
# Sort by start time
chords_list.sort(reverse=False, key=lambda x: x[1])
# Main loop
pcho = chords_list[0]
for cc in chords_list:
if cc[1] == pcho[1]:
cho.append(cc)
pcho = copy.deepcopy(cc)
else:
if not remove_single_notes:
chords.append(cho)
cho = []
cho.append(cc)
pcho = copy.deepcopy(cc)
i += 1
else:
if len(cho) > 1:
chords.append(cho)
cho = []
cho.append(cc)
pcho = copy.deepcopy(cc)
i += 1
# Averages
t0 = chords[0][0][1]
t1 = chords[-1][-1][1]
tdel = abs(t1 - t0)
avg_ms_per_chord = int(tdel / i)
avg_ms_per_pitch = int(tdel / len(chords_list))
# Delta time
tds = [int(abs(chords_list[i-1][1]-chords_list[i][1]) / 1) for i in range(1, len(chords_list))]
if len(tds) != 0: avg_delta_time = int(sum(tds) / len(tds))
# Chords list attributes
p = int(sum([int(y[4]) for y in chords_list]) / len(chords_list))
d = int(sum([int(y[2]) for y in chords_list]) / len(chords_list))
c = int(sum([int(y[3]) for y in chords_list]) / len(chords_list))
v = int(sum([int(y[5]) for y in chords_list]) / len(chords_list))
# Final shuffle
if shuffle_pairs:
random.shuffle(chords)
return chords, [avg_ms_per_chord, avg_ms_per_pitch, avg_delta_time], [d, c, p, v]
###################################################################################
def Tegridy_Chords_List_Music_Features(chords_list, st_dur_div = 1, pitch_div = 1, vel_div = 1):
'''Tegridy Chords List Music Features
Input: Flat chords list
Output: A list of the extracted chords list's music features
Project Los Angeles
Tegridy Code 2021'''
chords_list1 = [x for x in chords_list if x]
chords_list1.sort(reverse=False, key=lambda x: x[1])
# Features extraction code
melody_list = []
bass_melody = []
melody_chords = []
mel_avg_tds = []
mel_chrd_avg_tds = []
bass_melody_avg_tds = []
#print('Grouping by start time. This will take a while...')
values = set(map(lambda x:x[1], chords_list1)) # Non-multithreaded function version just in case
groups = [[y for y in chords_list1 if y[1]==x and len(y) == 6] for x in values] # Grouping notes into chords while discarting bad notes...
#print('Sorting events...')
for items in groups:
items.sort(reverse=True, key=lambda x: x[4]) # Sorting events by pitch
melody_list.append(items[0]) # Creating final melody list
melody_chords.append(items) # Creating final chords list
bass_melody.append(items[-1]) # Creating final bass melody list
#print('Final sorting by start time...')
melody_list.sort(reverse=False, key=lambda x: x[1]) # Sorting events by start time
melody_chords.sort(reverse=False, key=lambda x: x[0][1]) # Sorting events by start time
bass_melody.sort(reverse=False, key=lambda x: x[1]) # Sorting events by start time
# Extracting music features from the chords list
# Melody features
mel_avg_pitch = int(sum([y[4] for y in melody_list]) / len(melody_list) / pitch_div)
mel_avg_dur = int(sum([int(y[2] / st_dur_div) for y in melody_list]) / len(melody_list))
mel_avg_vel = int(sum([int(y[5] / vel_div) for y in melody_list]) / len(melody_list))
mel_avg_chan = int(sum([int(y[3]) for y in melody_list]) / len(melody_list))
mel_tds = [int(abs(melody_list[i-1][1]-melody_list[i][1])) for i in range(1, len(melody_list))]
if len(mel_tds) != 0: mel_avg_tds = int(sum(mel_tds) / len(mel_tds) / st_dur_div)
melody_features = [mel_avg_tds, mel_avg_dur, mel_avg_chan, mel_avg_pitch, mel_avg_vel]
# Chords list features
mel_chrd_avg_pitch = int(sum([y[4] for y in chords_list1]) / len(chords_list1) / pitch_div)
mel_chrd_avg_dur = int(sum([int(y[2] / st_dur_div) for y in chords_list1]) / len(chords_list1))
mel_chrd_avg_vel = int(sum([int(y[5] / vel_div) for y in chords_list1]) / len(chords_list1))
mel_chrd_avg_chan = int(sum([int(y[3]) for y in chords_list1]) / len(chords_list1))
mel_chrd_tds = [int(abs(chords_list1[i-1][1]-chords_list1[i][1])) for i in range(1, len(chords_list1))]
if len(mel_tds) != 0: mel_chrd_avg_tds = int(sum(mel_chrd_tds) / len(mel_chrd_tds) / st_dur_div)
chords_list_features = [mel_chrd_avg_tds, mel_chrd_avg_dur, mel_chrd_avg_chan, mel_chrd_avg_pitch, mel_chrd_avg_vel]
# Bass melody features
bass_melody_avg_pitch = int(sum([y[4] for y in bass_melody]) / len(bass_melody) / pitch_div)
bass_melody_avg_dur = int(sum([int(y[2] / st_dur_div) for y in bass_melody]) / len(bass_melody))
bass_melody_avg_vel = int(sum([int(y[5] / vel_div) for y in bass_melody]) / len(bass_melody))
bass_melody_avg_chan = int(sum([int(y[3]) for y in bass_melody]) / len(bass_melody))
bass_melody_tds = [int(abs(bass_melody[i-1][1]-bass_melody[i][1])) for i in range(1, len(bass_melody))]
if len(bass_melody_tds) != 0: bass_melody_avg_tds = int(sum(bass_melody_tds) / len(bass_melody_tds) / st_dur_div)
bass_melody_features = [bass_melody_avg_tds, bass_melody_avg_dur, bass_melody_avg_chan, bass_melody_avg_pitch, bass_melody_avg_vel]
# A list to return all features
music_features = []
music_features.extend([len(chords_list1)]) # Count of the original chords list notes
music_features.extend(melody_features) # Extracted melody features
music_features.extend(chords_list_features) # Extracted chords list features
music_features.extend(bass_melody_features) # Extracted bass melody features
music_features.extend([sum([y[4] for y in chords_list1])]) # Sum of all pitches in the original chords list
return music_features
###################################################################################
def Tegridy_Transform(chords_list, to_pitch=60, to_velocity=-1):
'''Tegridy Transform
Input: Flat chords list
Desired average pitch (-1 == no change)
Desired average velocity (-1 == no change)
Output: Transformed flat chords list
Project Los Angeles
Tegridy Code 2021'''
transformed_chords_list = []
chords_list.sort(reverse=False, key=lambda x: x[1])
chords_list_features = Optimus_Signature(chords_list)[1]
pitch_diff = int((chords_list_features[0] + chords_list_features[1] + chords_list_features[2]) / 3) - to_pitch
velocity_diff = chords_list_features[4] - to_velocity
for c in chords_list:
cc = copy.deepcopy(c)
if c[3] != 9: # Except the drums
if to_pitch != -1:
cc[4] = c[4] - pitch_diff
if to_velocity != -1:
cc[5] = c[5] - velocity_diff
transformed_chords_list.append(cc)
return transformed_chords_list
###################################################################################
def Tegridy_MIDI_Zip_Notes_Summarizer(chords_list, match_type = 4):
'''Tegridy MIDI Zip Notes Summarizer
Input: Flat chords list / SONG
Match type according to 'note' event of MIDI.py
Output: Summarized chords list
Number of summarized notes
Number of dicarted notes
Project Los Angeles
Tegridy Code 2021'''
i = 0
j = 0
out1 = []
pout = []
for o in chords_list:
# MIDI Zip
if o[match_type:] not in pout:
pout.append(o[match_type:])
out1.append(o)
j += 1
else:
i += 1
return out1, i
###################################################################################
def Tegridy_Score_Chords_Pairs_Generator(chords_list, shuffle_pairs = True, remove_single_notes=False):
'''Tegridy Score Chords Pairs Generator
Input: Flat chords list
Shuffle pairs (recommended)
Output: Score chords pairs list
Number of created pairs
Number of detected chords
Project Los Angeles
Tegridy Code 2021'''
chords = []
cho = []
i = 0
j = 0
chords_list.sort(reverse=False, key=lambda x: x[1])
pcho = chords_list[0]
for cc in chords_list:
if cc[1] == pcho[1]:
cho.append(cc)
pcho = copy.deepcopy(cc)
else:
if not remove_single_notes:
chords.append(cho)
cho = []
cho.append(cc)
pcho = copy.deepcopy(cc)
i += 1
else:
if len(cho) > 1:
chords.append(cho)
cho = []
cho.append(cc)
pcho = copy.deepcopy(cc)
i += 1
chords_pairs = []
for i in range(len(chords)-1):
chords_pairs.append([chords[i], chords[i+1]])
j += 1
if shuffle_pairs: random.shuffle(chords_pairs)
return chords_pairs, j, i
###################################################################################
def Tegridy_Sliced_Score_Pairs_Generator(chords_list, number_of_miliseconds_per_slice=2000, shuffle_pairs = False):
'''Tegridy Sliced Score Pairs Generator
Input: Flat chords list
Number of miliseconds per slice
Output: Sliced score pairs list
Number of created slices
Project Los Angeles
Tegridy Code 2021'''
chords = []
cho = []
time = number_of_miliseconds_per_slice
i = 0
chords_list1 = [x for x in chords_list if x]
chords_list1.sort(reverse=False, key=lambda x: x[1])
pcho = chords_list1[0]
for cc in chords_list1[1:]:
if cc[1] <= time:
cho.append(cc)
else:
if cho != [] and pcho != []: chords.append([pcho, cho])
pcho = copy.deepcopy(cho)
cho = []
cho.append(cc)
time += number_of_miliseconds_per_slice
i += 1
if cho != [] and pcho != []:
chords.append([pcho, cho])
pcho = copy.deepcopy(cho)
i += 1
if shuffle_pairs: random.shuffle(chords)
return chords, i
###################################################################################
def Tegridy_Timings_Converter(chords_list,
max_delta_time = 1000,
fixed_start_time = 250,
start_time = 0,
start_time_multiplier = 1,
durations_multiplier = 1):
'''Tegridy Timings Converter
Input: Flat chords list
Max delta time allowed between notes
Fixed start note time for excessive gaps
Output: Converted flat chords list
Project Los Angeles
Tegridy Code 2021'''
song = chords_list
song1 = []
p = song[0]
p[1] = start_time
time = start_time
delta = [0]
for i in range(len(song)):
if song[i][0] == 'note':
ss = copy.deepcopy(song[i])
if song[i][1] != p[1]:
if abs(song[i][1] - p[1]) > max_delta_time:
time += fixed_start_time
else:
time += abs(song[i][1] - p[1])
delta.append(abs(song[i][1] - p[1]))
ss[1] = int(round(time * start_time_multiplier, -1))
ss[2] = int(round(song[i][2] * durations_multiplier, -1))
song1.append(ss)
p = copy.deepcopy(song[i])
else:
ss[1] = int(round(time * start_time_multiplier, -1))
ss[2] = int(round(song[i][2] * durations_multiplier, -1))
song1.append(ss)
p = copy.deepcopy(song[i])
else:
ss = copy.deepcopy(song[i])
ss[1] = time
song1.append(ss)
average_delta_st = int(sum(delta) / len(delta))
average_duration = int(sum([y[2] for y in song1 if y[0] == 'note']) / len([y[2] for y in song1 if y[0] == 'note']))
song1.sort(reverse=False, key=lambda x: x[1])
return song1, time, average_delta_st, average_duration
###################################################################################
def Tegridy_Score_Slicer(chords_list, number_of_miliseconds_per_slice=2000, overlap_notes = 0, overlap_chords=False):
'''Tegridy Score Slicer
Input: Flat chords list
Number of miliseconds per slice
Output: Sliced chords list
Number of created slices
Project Los Angeles
Tegridy Code 2021'''
chords = []
cho = []
time = number_of_miliseconds_per_slice
ptime = 0
i = 0
pc_idx = 0
chords_list.sort(reverse=False, key=lambda x: x[1])
for cc in chords_list:
if cc[1] <= time:
cho.append(cc)
if ptime != cc[1]:
pc_idx = cho.index(cc)
ptime = cc[1]
else:
if overlap_chords:
chords.append(cho)
cho.extend(chords[-1][pc_idx:])
else:
chords.append(cho[:pc_idx])
cho = []
cho.append(cc)
time += number_of_miliseconds_per_slice
ptime = cc[1]
i += 1
if cho != []:
chords.append(cho)
i += 1
return [x for x in chords if x], i
###################################################################################
def Tegridy_TXT_Tokenizer(input_TXT_string, line_by_line_TXT_string=True):
'''Tegridy TXT Tokenizer
Input: TXT String
Output: Tokenized TXT string + forward and reverse dics
Project Los Angeles
Tegridy Code 2021'''
print('Tegridy TXT Tokenizer')
if line_by_line_TXT_string:
T = input_TXT_string.split()
else:
T = input_TXT_string.split(' ')
DIC = dict(zip(T, range(len(T))))
RDIC = dict(zip(range(len(T)), T))
TXTT = ''
for t in T:
try:
TXTT += chr(DIC[t])
except:
print('Error. Could not finish.')
return TXTT, DIC, RDIC
print('Done!')
return TXTT, DIC, RDIC
###################################################################################
def Tegridy_TXT_DeTokenizer(input_Tokenized_TXT_string, RDIC):
'''Tegridy TXT Tokenizer
Input: Tokenized TXT String
Output: DeTokenized TXT string
Project Los Angeles
Tegridy Code 2021'''
print('Tegridy TXT DeTokenizer')
Q = list(input_Tokenized_TXT_string)
c = 0
RTXT = ''
for q in Q:
try:
RTXT += RDIC[ord(q)] + chr(10)
except:
c+=1
print('Number of errors:', c)
print('Done!')
return RTXT
###################################################################################
def Tegridy_List_Slicer(input_list, slices_length_in_notes=20):
'''Input: List to slice
Desired slices length in notes
Output: Sliced list of lists
Project Los Angeles
Tegridy Code 2021'''
for i in range(0, len(input_list), slices_length_in_notes):
yield input_list[i:i + slices_length_in_notes]
###################################################################################
def Tegridy_Split_List(list_to_split, split_value=0):
# src courtesy of www.geeksforgeeks.org
# using list comprehension + zip() + slicing + enumerate()
# Split list into lists by particular value
size = len(list_to_split)
idx_list = [idx + 1 for idx, val in
enumerate(list_to_split) if val == split_value]
res = [list_to_split[i: j] for i, j in
zip([0] + idx_list, idx_list +
([size] if idx_list[-1] != size else []))]
# print result
# print("The list after splitting by a value : " + str(res))
return res
###################################################################################
# Binary chords functions
def tones_chord_to_bits(chord):
bits = [0] * 12
for num in chord:
bits[num] = 1
return bits
def bits_to_tones_chord(bits):
return [i for i, bit in enumerate(bits) if bit == 1]
def shift_bits(bits, n):
return bits[-n:] + bits[:-n]
def bits_to_int(bits, shift_bits_value=0):
bits = shift_bits(bits, shift_bits_value)
result = 0
for bit in bits:
result = (result << 1) | bit
return result
def int_to_bits(n):
bits = [0] * 12
for i in range(12):
bits[11 - i] = n % 2
n //= 2
return bits
def bad_chord(chord):
bad = any(b - a == 1 for a, b in zip(chord, chord[1:]))
if (0 in chord) and (11 in chord):
bad = True
return bad
def pitches_chord_to_int(pitches_chord, tones_transpose_value=0):
pitches_chord = [x for x in pitches_chord if 0 < x < 128]
if not (-12 < tones_transpose_value < 12):
tones_transpose_value = 0
tones_chord = sorted(list(set([c % 12 for c in sorted(list(set(pitches_chord)))])))
bits = tones_chord_to_bits(tones_chord)
integer = bits_to_int(bits, shift_bits_value=tones_transpose_value)
return integer
def int_to_pitches_chord(integer, chord_base_pitch=60):
if 0 < integer < 4096:
bits = int_to_bits(integer)
tones_chord = bits_to_tones_chord(bits)
if not bad_chord(tones_chord):
pitches_chord = [t+chord_base_pitch for t in tones_chord]
return [pitches_chord, tones_chord]
else:
return 0 # Bad chord code
else:
return -1 # Bad integer code
###################################################################################
def bad_chord(chord):
bad = any(b - a == 1 for a, b in zip(chord, chord[1:]))
if (0 in chord) and (11 in chord):
bad = True
return bad
def validate_pitches_chord(pitches_chord, return_sorted = True):
pitches_chord = sorted(list(set([x for x in pitches_chord if 0 < x < 128])))
tones_chord = sorted(list(set([c % 12 for c in sorted(list(set(pitches_chord)))])))
if not bad_chord(tones_chord):
if return_sorted:
pitches_chord.sort(reverse=True)
return pitches_chord
else:
if 0 in tones_chord and 11 in tones_chord:
tones_chord.remove(0)
fixed_tones = [[a, b] for a, b in zip(tones_chord, tones_chord[1:]) if b-a != 1]
fixed_tones_chord = []
for f in fixed_tones:
fixed_tones_chord.extend(f)
fixed_tones_chord = list(set(fixed_tones_chord))
fixed_pitches_chord = []
for p in pitches_chord:
if (p % 12) in fixed_tones_chord:
fixed_pitches_chord.append(p)
if return_sorted:
fixed_pitches_chord.sort(reverse=True)
return fixed_pitches_chord
def validate_pitches(chord, channel_to_check = 0, return_sorted = True):
pitches_chord = sorted(list(set([x[4] for x in chord if 0 < x[4] < 128 and x[3] == channel_to_check])))
if pitches_chord:
tones_chord = sorted(list(set([c % 12 for c in sorted(list(set(pitches_chord)))])))
if not bad_chord(tones_chord):
if return_sorted:
chord.sort(key = lambda x: x[4], reverse=True)
return chord
else:
if 0 in tones_chord and 11 in tones_chord:
tones_chord.remove(0)
fixed_tones = [[a, b] for a, b in zip(tones_chord, tones_chord[1:]) if b-a != 1]
fixed_tones_chord = []
for f in fixed_tones:
fixed_tones_chord.extend(f)
fixed_tones_chord = list(set(fixed_tones_chord))
fixed_chord = []
for c in chord:
if c[3] == channel_to_check:
if (c[4] % 12) in fixed_tones_chord:
fixed_chord.append(c)
else:
fixed_chord.append(c)
if return_sorted:
fixed_chord.sort(key = lambda x: x[4], reverse=True)
return fixed_chord
else:
chord.sort(key = lambda x: x[4], reverse=True)
return chord
def adjust_score_velocities(score, max_velocity):
min_velocity = min([c[5] for c in score])
max_velocity_all_channels = max([c[5] for c in score])
min_velocity_ratio = min_velocity / max_velocity_all_channels
max_channel_velocity = max([c[5] for c in score])
if max_channel_velocity < min_velocity:
factor = max_velocity / min_velocity
else:
factor = max_velocity / max_channel_velocity
for i in range(len(score)):
score[i][5] = int(score[i][5] * factor)
def chordify_score(score,
return_choridfied_score=True,
return_detected_score_information=False
):
if score:
num_tracks = 1
single_track_score = []
score_num_ticks = 0
if type(score[0]) == int and len(score) > 1:
score_type = 'MIDI_PY'
score_num_ticks = score[0]
while num_tracks < len(score):
for event in score[num_tracks]:
single_track_score.append(event)
num_tracks += 1
else:
score_type = 'CUSTOM'
single_track_score = score
if single_track_score and single_track_score[0]:
try:
if type(single_track_score[0][0]) == str or single_track_score[0][0] == 'note':
single_track_score.sort(key = lambda x: x[1])
score_timings = [s[1] for s in single_track_score]
else:
score_timings = [s[0] for s in single_track_score]
is_score_time_absolute = lambda sct: all(x <= y for x, y in zip(sct, sct[1:]))
score_timings_type = ''
if is_score_time_absolute(score_timings):
score_timings_type = 'ABS'
chords = []
cho = []
if score_type == 'MIDI_PY':
pe = single_track_score[0]
else:
pe = single_track_score[0]
for e in single_track_score:
if score_type == 'MIDI_PY':
time = e[1]
ptime = pe[1]
else:
time = e[0]
ptime = pe[0]
if time == ptime:
cho.append(e)
else:
if len(cho) > 0:
chords.append(cho)
cho = []
cho.append(e)
pe = e
if len(cho) > 0:
chords.append(cho)
else:
score_timings_type = 'REL'
chords = []
cho = []
for e in single_track_score:
if score_type == 'MIDI_PY':
time = e[1]
else:
time = e[0]
if time == 0:
cho.append(e)
else:
if len(cho) > 0:
chords.append(cho)
cho = []
cho.append(e)
if len(cho) > 0:
chords.append(cho)
requested_data = []
if return_detected_score_information:
detected_score_information = []
detected_score_information.append(['Score type', score_type])
detected_score_information.append(['Score timings type', score_timings_type])
detected_score_information.append(['Score tpq', score_num_ticks])
detected_score_information.append(['Score number of tracks', num_tracks])
requested_data.append(detected_score_information)
if return_choridfied_score and return_detected_score_information:
requested_data.append(chords)
if return_choridfied_score and not return_detected_score_information:
requested_data.extend(chords)
return requested_data
except Exception as e:
print('Error!')
print('Check score for consistency and compatibility!')
print('Exception detected:', e)
else:
return None
else:
return None
def fix_monophonic_score_durations(monophonic_score):
fixed_score = []
if monophonic_score[0][0] == 'note':
for i in range(len(monophonic_score)-1):
note = monophonic_score[i]
nmt = monophonic_score[i+1][1]
if note[1]+note[2] >= nmt:
note_dur = nmt-note[1]-1
else:
note_dur = note[2]
new_note = [note[0], note[1], note_dur] + note[3:]
fixed_score.append(new_note)
fixed_score.append(monophonic_score[-1])
elif type(monophonic_score[0][0]) == int:
for i in range(len(monophonic_score)-1):
note = monophonic_score[i]
nmt = monophonic_score[i+1][0]
if note[0]+note[1] >= nmt:
note_dur = nmt-note[0]-1
else:
note_dur = note[1]
new_note = [note[0], note_dur] + note[2:]
fixed_score.append(new_note)
fixed_score.append(monophonic_score[-1])
return fixed_score
###################################################################################
from itertools import product
ALL_CHORDS = [[0], [7], [5], [9], [2], [4], [11], [10], [8], [6], [3], [1], [0, 9], [2, 5],
[4, 7], [7, 10], [2, 11], [0, 3], [6, 9], [1, 4], [8, 11], [5, 8], [1, 10],
[3, 6], [0, 4], [5, 9], [7, 11], [0, 7], [0, 5], [2, 10], [2, 7], [2, 9],
[2, 6], [4, 11], [4, 9], [3, 7], [5, 10], [1, 9], [0, 8], [6, 11], [3, 11],
[4, 8], [3, 10], [3, 8], [1, 5], [1, 8], [1, 6], [6, 10], [3, 9], [4, 10],
[1, 7], [0, 6], [2, 8], [5, 11], [5, 7], [0, 10], [0, 2], [9, 11], [7, 9],
[2, 4], [4, 6], [3, 5], [8, 10], [6, 8], [1, 3], [1, 11], [2, 7, 11],
[0, 4, 7], [0, 5, 9], [2, 6, 9], [2, 5, 10], [1, 4, 9], [4, 8, 11], [3, 7, 10],
[0, 3, 8], [3, 6, 11], [1, 5, 8], [1, 6, 10], [0, 4, 9], [2, 5, 9], [4, 7, 11],
[2, 7, 10], [2, 6, 11], [0, 3, 7], [0, 5, 8], [1, 4, 8], [1, 6, 9], [3, 8, 11],
[1, 5, 10], [3, 6, 10], [2, 5, 11], [4, 7, 10], [3, 6, 9], [0, 6, 9],
[0, 3, 9], [2, 8, 11], [2, 5, 8], [1, 7, 10], [1, 4, 7], [0, 3, 6], [1, 4, 10],
[5, 8, 11], [2, 5, 7], [0, 7, 10], [0, 2, 9], [0, 3, 5], [6, 9, 11], [4, 7, 9],
[2, 4, 11], [5, 8, 10], [1, 3, 10], [1, 4, 6], [3, 6, 8], [1, 8, 11],
[5, 7, 11], [0, 4, 10], [3, 5, 9], [0, 2, 6], [1, 7, 9], [0, 7, 9], [5, 7, 10],
[2, 8, 10], [3, 9, 11], [0, 2, 5], [2, 4, 8], [2, 4, 7], [0, 2, 7], [2, 7, 9],
[4, 9, 11], [4, 6, 9], [1, 3, 7], [2, 4, 9], [0, 5, 7], [0, 3, 10], [2, 9, 11],
[0, 5, 10], [0, 6, 8], [4, 6, 10], [4, 6, 11], [1, 4, 11], [6, 8, 11],
[1, 5, 11], [1, 6, 11], [1, 8, 10], [1, 6, 8], [3, 5, 8], [3, 8, 10],
[1, 3, 8], [3, 5, 10], [1, 3, 6], [2, 5, 7, 10], [0, 3, 7, 10], [1, 4, 8, 11],
[2, 4, 7, 11], [0, 4, 7, 9], [0, 2, 5, 9], [2, 6, 9, 11], [1, 5, 8, 10],
[0, 3, 5, 8], [3, 6, 8, 11], [1, 3, 6, 10], [1, 4, 6, 9], [1, 5, 9], [0, 4, 8],
[2, 6, 10], [3, 7, 11], [0, 3, 6, 9], [2, 5, 8, 11], [1, 4, 7, 10],
[2, 5, 7, 11], [0, 2, 6, 9], [0, 4, 7, 10], [2, 4, 8, 11], [0, 3, 5, 9],
[1, 4, 7, 9], [3, 6, 9, 11], [2, 5, 8, 10], [1, 4, 6, 10], [0, 3, 6, 8],
[1, 3, 7, 10], [1, 5, 8, 11], [2, 4, 10], [5, 9, 11], [1, 5, 7], [0, 2, 8],
[0, 4, 6], [1, 7, 11], [3, 7, 9], [1, 3, 9], [7, 9, 11], [5, 7, 9], [0, 6, 10],
[0, 2, 10], [2, 6, 8], [0, 2, 4], [4, 8, 10], [1, 9, 11], [2, 4, 6],
[3, 5, 11], [3, 5, 7], [0, 8, 10], [4, 6, 8], [1, 3, 11], [6, 8, 10],
[1, 3, 5], [0, 2, 5, 10], [0, 5, 7, 9], [0, 3, 8, 10], [0, 2, 4, 7],
[4, 6, 8, 11], [3, 5, 7, 10], [2, 7, 9, 11], [2, 4, 6, 9], [1, 6, 8, 10],
[1, 4, 9, 11], [1, 3, 5, 8], [1, 3, 6, 11], [2, 5, 9, 11], [2, 4, 7, 10],
[0, 2, 5, 8], [1, 5, 7, 10], [0, 4, 6, 9], [1, 3, 6, 9], [0, 3, 6, 10],
[2, 6, 8, 11], [0, 2, 7, 9], [1, 4, 8, 10], [0, 3, 7, 9], [3, 5, 8, 11],
[0, 5, 7, 10], [0, 2, 5, 7], [1, 4, 7, 11], [2, 4, 7, 9], [0, 3, 5, 10],
[4, 6, 9, 11], [1, 4, 6, 11], [2, 4, 9, 11], [1, 6, 8, 11], [1, 3, 6, 8],
[1, 3, 8, 10], [3, 5, 8, 10], [4, 7, 9, 11], [0, 2, 7, 10], [2, 5, 7, 9],
[0, 2, 4, 9], [1, 6, 9, 11], [2, 4, 6, 11], [0, 3, 5, 7], [0, 5, 8, 10],
[1, 4, 6, 8], [1, 3, 5, 10], [1, 3, 8, 11], [3, 6, 8, 10], [0, 2, 5, 7, 10],
[0, 2, 4, 7, 9], [0, 2, 5, 7, 9], [1, 3, 7, 9], [1, 4, 6, 9, 11],
[1, 3, 6, 8, 11], [3, 5, 9, 11], [1, 3, 6, 8, 10], [1, 4, 6, 8, 11],
[1, 3, 5, 8, 10], [2, 4, 6, 9, 11], [2, 4, 8, 10], [2, 4, 7, 9, 11],
[0, 3, 5, 7, 10], [1, 5, 7, 11], [0, 2, 6, 8], [0, 3, 5, 8, 10], [0, 4, 6, 10],
[1, 3, 5, 9], [1, 5, 7, 9], [2, 6, 8, 10], [3, 7, 9, 11], [0, 2, 4, 8],
[0, 4, 6, 8], [0, 4, 8, 10], [2, 4, 6, 10], [1, 3, 7, 11], [0, 2, 6, 10],
[1, 5, 9, 11], [3, 5, 7, 11], [1, 7, 9, 11], [0, 2, 4, 6], [1, 3, 9, 11],
[0, 2, 4, 10], [5, 7, 9, 11], [2, 4, 6, 8], [0, 2, 8, 10], [3, 5, 7, 9],
[1, 3, 5, 7], [4, 6, 8, 10], [0, 6, 8, 10], [1, 3, 5, 11], [0, 3, 6, 8, 10],
[0, 2, 4, 6, 9], [1, 4, 7, 9, 11], [2, 4, 6, 8, 11], [1, 3, 6, 9, 11],
[1, 3, 5, 8, 11], [0, 2, 5, 8, 10], [1, 4, 6, 8, 10], [0, 3, 5, 7, 9],
[2, 5, 7, 9, 11], [1, 3, 5, 7, 10], [0, 2, 4, 7, 10], [1, 3, 5, 7, 9],
[1, 3, 5, 9, 11], [1, 5, 7, 9, 11], [1, 3, 7, 9, 11], [3, 5, 7, 9, 11],
[2, 4, 6, 8, 10], [0, 4, 6, 8, 10], [0, 2, 6, 8, 10], [1, 3, 5, 7, 11],
[0, 2, 4, 8, 10], [0, 2, 4, 6, 8], [0, 2, 4, 6, 10], [0, 2, 4, 6, 8, 10],
[1, 3, 5, 7, 9, 11]]
def find_exact_match_variable_length(list_of_lists, target_list, uncertain_indices):
# Infer possible values for each uncertain index
possible_values = {idx: set() for idx in uncertain_indices}
for sublist in list_of_lists:
for idx in uncertain_indices:
if idx < len(sublist):
possible_values[idx].add(sublist[idx])
# Generate all possible combinations for the uncertain elements
uncertain_combinations = product(*(possible_values[idx] for idx in uncertain_indices))
for combination in uncertain_combinations:
# Create a copy of the target list and update the uncertain elements
test_list = target_list[:]
for idx, value in zip(uncertain_indices, combination):
test_list[idx] = value
# Check if the modified target list is an exact match in the list of lists
# Only consider sublists that are at least as long as the target list
for sublist in list_of_lists:
if len(sublist) >= len(test_list) and sublist[:len(test_list)] == test_list:
return sublist # Return the matching sublist
return None # No exact match found
def advanced_validate_chord_pitches(chord, channel_to_check = 0, return_sorted = True):
pitches_chord = sorted(list(set([x[4] for x in chord if 0 < x[4] < 128 and x[3] == channel_to_check])))
if pitches_chord:
tones_chord = sorted(list(set([c % 12 for c in sorted(list(set(pitches_chord)))])))
if not bad_chord(tones_chord):
if return_sorted:
chord.sort(key = lambda x: x[4], reverse=True)
return chord
else:
bad_chord_indices = list(set([i for s in [[tones_chord.index(a), tones_chord.index(b)] for a, b in zip(tones_chord, tones_chord[1:]) if b-a == 1] for i in s]))
good_tones_chord = find_exact_match_variable_length(ALL_CHORDS, tones_chord, bad_chord_indices)
if good_tones_chord is not None:
fixed_chord = []
for c in chord:
if c[3] == channel_to_check:
if (c[4] % 12) in good_tones_chord:
fixed_chord.append(c)
else:
fixed_chord.append(c)
if return_sorted:
fixed_chord.sort(key = lambda x: x[4], reverse=True)
else:
if 0 in tones_chord and 11 in tones_chord:
tones_chord.remove(0)
fixed_tones = [[a, b] for a, b in zip(tones_chord, tones_chord[1:]) if b-a != 1]
fixed_tones_chord = []
for f in fixed_tones:
fixed_tones_chord.extend(f)
fixed_tones_chord = list(set(fixed_tones_chord))
fixed_chord = []
for c in chord:
if c[3] == channel_to_check:
if (c[4] % 12) in fixed_tones_chord:
fixed_chord.append(c)
else:
fixed_chord.append(c)
if return_sorted:
fixed_chord.sort(key = lambda x: x[4], reverse=True)
return fixed_chord
else:
chord.sort(key = lambda x: x[4], reverse=True)
return chord
###################################################################################
def analyze_score_pitches(score, channels_to_analyze=[0]):
analysis = {}
score_notes = [s for s in score if s[3] in channels_to_analyze]
cscore = chordify_score(score_notes)
chords_tones = []
all_tones = []
all_chords_good = True
bad_chords = []
for c in cscore:
tones = sorted(list(set([t[4] % 12 for t in c])))
chords_tones.append(tones)
all_tones.extend(tones)
if tones not in ALL_CHORDS:
all_chords_good = False
bad_chords.append(tones)
analysis['Number of notes'] = len(score_notes)
analysis['Number of chords'] = len(cscore)
analysis['Score tones'] = sorted(list(set(all_tones)))
analysis['Shortest chord'] = sorted(min(chords_tones, key=len))
analysis['Longest chord'] = sorted(max(chords_tones, key=len))
analysis['All chords good'] = all_chords_good
analysis['Bad chords'] = bad_chords
return analysis
###################################################################################
ALL_CHORDS_GROUPED = [[[1, 3, 5, 7, 9, 11], [0, 2, 4, 6, 8, 10]],
[[0, 2, 5, 7, 10], [0, 2, 4, 7, 9], [0, 2, 5, 7, 9], [1, 4, 6, 9, 11],
[1, 3, 6, 8, 11], [1, 3, 6, 8, 10], [1, 4, 6, 8, 11], [1, 3, 5, 8, 10],
[2, 4, 6, 9, 11], [2, 4, 7, 9, 11], [0, 3, 5, 7, 10], [0, 3, 5, 8, 10],
[0, 3, 6, 8, 10], [0, 2, 4, 6, 9], [1, 4, 7, 9, 11], [2, 4, 6, 8, 11],
[1, 3, 6, 9, 11], [1, 3, 5, 8, 11], [0, 2, 5, 8, 10], [1, 4, 6, 8, 10],
[0, 3, 5, 7, 9], [2, 5, 7, 9, 11], [1, 3, 5, 7, 10], [0, 2, 4, 7, 10],
[1, 3, 5, 7, 9], [1, 3, 5, 9, 11], [1, 5, 7, 9, 11], [1, 3, 7, 9, 11],
[3, 5, 7, 9, 11], [2, 4, 6, 8, 10], [0, 4, 6, 8, 10], [0, 2, 6, 8, 10],
[1, 3, 5, 7, 11], [0, 2, 4, 8, 10], [0, 2, 4, 6, 8], [0, 2, 4, 6, 10]],
[[2, 5, 7, 10], [0, 3, 7, 10], [1, 4, 8, 11], [2, 4, 7, 11], [0, 4, 7, 9],
[0, 2, 5, 9], [2, 6, 9, 11], [1, 5, 8, 10], [0, 3, 5, 8], [3, 6, 8, 11],
[1, 3, 6, 10], [1, 4, 6, 9], [0, 3, 6, 9], [2, 5, 8, 11], [1, 4, 7, 10],
[2, 5, 7, 11], [0, 2, 6, 9], [0, 4, 7, 10], [2, 4, 8, 11], [0, 3, 5, 9],
[1, 4, 7, 9], [3, 6, 9, 11], [2, 5, 8, 10], [1, 4, 6, 10], [0, 3, 6, 8],
[1, 3, 7, 10], [1, 5, 8, 11], [0, 2, 5, 10], [0, 5, 7, 9], [0, 3, 8, 10],
[0, 2, 4, 7], [4, 6, 8, 11], [3, 5, 7, 10], [2, 7, 9, 11], [2, 4, 6, 9],
[1, 6, 8, 10], [1, 4, 9, 11], [1, 3, 5, 8], [1, 3, 6, 11], [2, 5, 9, 11],
[2, 4, 7, 10], [0, 2, 5, 8], [1, 5, 7, 10], [0, 4, 6, 9], [1, 3, 6, 9],
[0, 3, 6, 10], [2, 6, 8, 11], [0, 2, 7, 9], [1, 4, 8, 10], [0, 3, 7, 9],
[3, 5, 8, 11], [0, 5, 7, 10], [0, 2, 5, 7], [1, 4, 7, 11], [2, 4, 7, 9],
[0, 3, 5, 10], [4, 6, 9, 11], [1, 4, 6, 11], [2, 4, 9, 11], [1, 6, 8, 11],
[1, 3, 6, 8], [1, 3, 8, 10], [3, 5, 8, 10], [4, 7, 9, 11], [0, 2, 7, 10],
[2, 5, 7, 9], [0, 2, 4, 9], [1, 6, 9, 11], [2, 4, 6, 11], [0, 3, 5, 7],
[0, 5, 8, 10], [1, 4, 6, 8], [1, 3, 5, 10], [1, 3, 8, 11], [3, 6, 8, 10],
[1, 3, 7, 9], [3, 5, 9, 11], [2, 4, 8, 10], [1, 5, 7, 11], [0, 2, 6, 8],
[0, 4, 6, 10], [1, 3, 5, 9], [1, 5, 7, 9], [2, 6, 8, 10], [3, 7, 9, 11],
[0, 2, 4, 8], [0, 4, 6, 8], [0, 4, 8, 10], [2, 4, 6, 10], [1, 3, 7, 11],
[0, 2, 6, 10], [1, 5, 9, 11], [3, 5, 7, 11], [1, 7, 9, 11], [0, 2, 4, 6],
[1, 3, 9, 11], [0, 2, 4, 10], [5, 7, 9, 11], [2, 4, 6, 8], [0, 2, 8, 10],
[3, 5, 7, 9], [1, 3, 5, 7], [4, 6, 8, 10], [0, 6, 8, 10], [1, 3, 5, 11]],
[[2, 7, 11], [0, 4, 7], [0, 5, 9], [2, 6, 9], [2, 5, 10], [1, 4, 9],
[4, 8, 11], [3, 7, 10], [0, 3, 8], [3, 6, 11], [1, 5, 8], [1, 6, 10],
[0, 4, 9], [2, 5, 9], [4, 7, 11], [2, 7, 10], [2, 6, 11], [0, 3, 7],
[0, 5, 8], [1, 4, 8], [1, 6, 9], [3, 8, 11], [1, 5, 10], [3, 6, 10],
[2, 5, 11], [4, 7, 10], [3, 6, 9], [0, 6, 9], [0, 3, 9], [2, 8, 11],
[2, 5, 8], [1, 7, 10], [1, 4, 7], [0, 3, 6], [1, 4, 10], [5, 8, 11],
[2, 5, 7], [0, 7, 10], [0, 2, 9], [0, 3, 5], [6, 9, 11], [4, 7, 9],
[2, 4, 11], [5, 8, 10], [1, 3, 10], [1, 4, 6], [3, 6, 8], [1, 8, 11],
[5, 7, 11], [0, 4, 10], [3, 5, 9], [0, 2, 6], [1, 7, 9], [0, 7, 9],
[5, 7, 10], [2, 8, 10], [3, 9, 11], [0, 2, 5], [2, 4, 8], [2, 4, 7],
[0, 2, 7], [2, 7, 9], [4, 9, 11], [4, 6, 9], [1, 3, 7], [2, 4, 9], [0, 5, 7],
[0, 3, 10], [2, 9, 11], [0, 5, 10], [0, 6, 8], [4, 6, 10], [4, 6, 11],
[1, 4, 11], [6, 8, 11], [1, 5, 11], [1, 6, 11], [1, 8, 10], [1, 6, 8],
[3, 5, 8], [3, 8, 10], [1, 3, 8], [3, 5, 10], [1, 3, 6], [1, 5, 9], [0, 4, 8],
[2, 6, 10], [3, 7, 11], [2, 4, 10], [5, 9, 11], [1, 5, 7], [0, 2, 8],
[0, 4, 6], [1, 7, 11], [3, 7, 9], [1, 3, 9], [7, 9, 11], [5, 7, 9],
[0, 6, 10], [0, 2, 10], [2, 6, 8], [0, 2, 4], [4, 8, 10], [1, 9, 11],
[2, 4, 6], [3, 5, 11], [3, 5, 7], [0, 8, 10], [4, 6, 8], [1, 3, 11],
[6, 8, 10], [1, 3, 5]],
[[0, 9], [2, 5], [4, 7], [7, 10], [2, 11], [0, 3], [6, 9], [1, 4], [8, 11],
[5, 8], [1, 10], [3, 6], [0, 4], [5, 9], [7, 11], [0, 7], [0, 5], [2, 10],
[2, 7], [2, 9], [2, 6], [4, 11], [4, 9], [3, 7], [5, 10], [1, 9], [0, 8],
[6, 11], [3, 11], [4, 8], [3, 10], [3, 8], [1, 5], [1, 8], [1, 6], [6, 10],
[3, 9], [4, 10], [1, 7], [0, 6], [2, 8], [5, 11], [5, 7], [0, 10], [0, 2],
[9, 11], [7, 9], [2, 4], [4, 6], [3, 5], [8, 10], [6, 8], [1, 3], [1, 11]],
[[0], [7], [5], [9], [2], [4], [11], [10], [8], [6], [3], [1]]
]
def group_sublists_by_length(lst):
unique_lengths = sorted(list(set(map(len, lst))), reverse=True)
return [[x for x in lst if len(x) == i] for i in unique_lengths]
def pitches_to_tones_chord(pitches):
return sorted(set([p % 12 for p in pitches]))
def tones_chord_to_pitches(tones_chord, base_pitch=60):
return [t+base_pitch for t in tones_chord if 0 <= t < 12]
###################################################################################
def advanced_score_processor(raw_score,
patches_to_analyze=list(range(129)),
return_score_analysis=False,
return_enhanced_score=False,
return_enhanced_score_notes=False,
return_enhanced_monophonic_melody=False,
return_chordified_enhanced_score=False,
return_chordified_enhanced_score_with_lyrics=False,
return_score_tones_chords=False,
return_text_and_lyric_events=False
):
'''TMIDIX Advanced Score Processor'''
# Score data types detection
if raw_score and type(raw_score) == list:
num_ticks = 0
num_tracks = 1
basic_single_track_score = []
if type(raw_score[0]) != int:
if len(raw_score[0]) < 5 and type(raw_score[0][0]) != str:
return ['Check score for errors and compatibility!']
else:
basic_single_track_score = copy.deepcopy(raw_score)
else:
num_ticks = raw_score[0]
while num_tracks < len(raw_score):
for event in raw_score[num_tracks]:
ev = copy.deepcopy(event)
basic_single_track_score.append(ev)
num_tracks += 1
basic_single_track_score.sort(key=lambda x: x[4] if x[0] == 'note' else 128, reverse=True)
basic_single_track_score.sort(key=lambda x: x[1])
enhanced_single_track_score = []
patches = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
all_score_patches = []
num_patch_changes = 0
for event in basic_single_track_score:
if event[0] == 'patch_change':
patches[event[2]] = event[3]
enhanced_single_track_score.append(event)
num_patch_changes += 1
if event[0] == 'note':
if event[3] != 9:
event.extend([patches[event[3]]])
all_score_patches.extend([patches[event[3]]])
else:
event.extend([128])
all_score_patches.extend([128])
if enhanced_single_track_score:
if (event[1] == enhanced_single_track_score[-1][1]):
if ([event[3], event[4]] != enhanced_single_track_score[-1][3:5]):
enhanced_single_track_score.append(event)
else:
enhanced_single_track_score.append(event)
else:
enhanced_single_track_score.append(event)
if event[0] not in ['note', 'patch_change']:
enhanced_single_track_score.append(event)
enhanced_single_track_score.sort(key=lambda x: x[6] if x[0] == 'note' else -1)
enhanced_single_track_score.sort(key=lambda x: x[4] if x[0] == 'note' else 128, reverse=True)
enhanced_single_track_score.sort(key=lambda x: x[1])
# Analysis and chordification
cscore = []
cescore = []
chords_tones = []
tones_chords = []
all_tones = []
all_chords_good = True
bad_chords = []
bad_chords_count = 0
score_notes = []
score_pitches = []
score_patches = []
num_text_events = 0
num_lyric_events = 0
num_other_events = 0
text_and_lyric_events = []
text_and_lyric_events_latin = None
analysis = {}
score_notes = [s for s in enhanced_single_track_score if s[0] == 'note' and s[6] in patches_to_analyze]
score_patches = [sn[6] for sn in score_notes]
if return_text_and_lyric_events:
text_and_lyric_events = [e for e in enhanced_single_track_score if e[0] in ['text_event', 'lyric']]
if text_and_lyric_events:
text_and_lyric_events_latin = True
for e in text_and_lyric_events:
try:
tle = str(e[2].decode())
except:
tle = str(e[2])
for c in tle:
if not 0 <= ord(c) < 128:
text_and_lyric_events_latin = False
if (return_chordified_enhanced_score or return_score_analysis) and any(elem in patches_to_analyze for elem in score_patches):
cescore = chordify_score([num_ticks, enhanced_single_track_score])
if return_score_analysis:
cscore = chordify_score(score_notes)
score_pitches = [sn[4] for sn in score_notes]
text_events = [e for e in enhanced_single_track_score if e[0] == 'text_event']
num_text_events = len(text_events)
lyric_events = [e for e in enhanced_single_track_score if e[0] == 'lyric']
num_lyric_events = len(lyric_events)
other_events = [e for e in enhanced_single_track_score if e[0] not in ['note', 'patch_change', 'text_event', 'lyric']]
num_other_events = len(other_events)
for c in cscore:
tones = sorted(set([t[4] % 12 for t in c if t[3] != 9]))
if tones:
chords_tones.append(tones)
all_tones.extend(tones)
if tones not in ALL_CHORDS:
all_chords_good = False
bad_chords.append(tones)
bad_chords_count += 1
analysis['Number of ticks per quarter note'] = num_ticks
analysis['Number of tracks'] = num_tracks
analysis['Number of all events'] = len(enhanced_single_track_score)
analysis['Number of patch change events'] = num_patch_changes
analysis['Number of text events'] = num_text_events
analysis['Number of lyric events'] = num_lyric_events
analysis['All text and lyric events Latin'] = text_and_lyric_events_latin
analysis['Number of other events'] = num_other_events
analysis['Number of score notes'] = len(score_notes)
analysis['Number of score chords'] = len(cscore)
analysis['Score patches'] = sorted(set(score_patches))
analysis['Score pitches'] = sorted(set(score_pitches))
analysis['Score tones'] = sorted(set(all_tones))
if chords_tones:
analysis['Shortest chord'] = sorted(min(chords_tones, key=len))
analysis['Longest chord'] = sorted(max(chords_tones, key=len))
analysis['All chords good'] = all_chords_good
analysis['Number of bad chords'] = bad_chords_count
analysis['Bad chords'] = sorted([list(c) for c in set(tuple(bc) for bc in bad_chords)])
else:
analysis['Error'] = 'Provided score does not have specified patches to analyse'
analysis['Provided patches to analyse'] = sorted(patches_to_analyze)
analysis['Patches present in the score'] = sorted(set(all_score_patches))
if return_enhanced_monophonic_melody:
score_notes_copy = copy.deepcopy(score_notes)
chordified_score_notes = chordify_score(score_notes_copy)
melody = [c[0] for c in chordified_score_notes]
fixed_melody = []
for i in range(len(melody)-1):
note = melody[i]
nmt = melody[i+1][1]
if note[1]+note[2] >= nmt:
note_dur = nmt-note[1]-1
else:
note_dur = note[2]
melody[i][2] = note_dur
fixed_melody.append(melody[i])
fixed_melody.append(melody[-1])
if return_score_tones_chords:
cscore = chordify_score(score_notes)
for c in cscore:
tones_chord = sorted(set([t[4] % 12 for t in c if t[3] != 9]))
if tones_chord:
tones_chords.append(tones_chord)
if return_chordified_enhanced_score_with_lyrics:
score_with_lyrics = [e for e in enhanced_single_track_score if e[0] in ['note', 'text_event', 'lyric']]
chordified_enhanced_score_with_lyrics = chordify_score(score_with_lyrics)
# Returned data
requested_data = []
if return_score_analysis and analysis:
requested_data.append([[k, v] for k, v in analysis.items()])
if return_enhanced_score and enhanced_single_track_score:
requested_data.append([num_ticks, enhanced_single_track_score])
if return_enhanced_score_notes and score_notes:
requested_data.append(score_notes)
if return_enhanced_monophonic_melody and fixed_melody:
requested_data.append(fixed_melody)
if return_chordified_enhanced_score and cescore:
requested_data.append(cescore)
if return_chordified_enhanced_score_with_lyrics and chordified_enhanced_score_with_lyrics:
requested_data.append(chordified_enhanced_score_with_lyrics)
if return_score_tones_chords and tones_chords:
requested_data.append(tones_chords)
if return_text_and_lyric_events and text_and_lyric_events:
requested_data.append(text_and_lyric_events)
return requested_data
else:
return ['Check score for errors and compatibility!']
###################################################################################
import random
import copy
###################################################################################
def replace_bad_tones_chord(bad_tones_chord):
bad_chord_p = [0] * 12
for b in bad_tones_chord:
bad_chord_p[b] = 1
match_ratios = []
good_chords = []
for c in ALL_CHORDS:
good_chord_p = [0] * 12
for cc in c:
good_chord_p[cc] = 1
good_chords.append(good_chord_p)
match_ratios.append(sum(i == j for i, j in zip(good_chord_p, bad_chord_p)) / len(good_chord_p))
best_good_chord = good_chords[match_ratios.index(max(match_ratios))]
replaced_chord = []
for i in range(len(best_good_chord)):
if best_good_chord[i] == 1:
replaced_chord.append(i)
return [replaced_chord, max(match_ratios)]
###################################################################################
def check_and_fix_chord(chord,
channel_index=3,
pitch_index=4
):
tones_chord = sorted(set([t[pitch_index] % 12 for t in chord if t[channel_index] != 9]))
notes_events = [t for t in chord if t[channel_index] != 9]
notes_events.sort(key=lambda x: x[pitch_index], reverse=True)
drums_events = [t for t in chord if t[channel_index] == 9]
checked_and_fixed_chord = []
if tones_chord:
new_tones_chord = advanced_check_and_fix_tones_chord(tones_chord, high_pitch=notes_events[0][pitch_index])
if new_tones_chord != tones_chord:
if len(notes_events) > 1:
checked_and_fixed_chord.extend([notes_events[0]])
for cc in notes_events[1:]:
if cc[channel_index] != 9:
if (cc[pitch_index] % 12) in new_tones_chord:
checked_and_fixed_chord.extend([cc])
checked_and_fixed_chord.extend(drums_events)
else:
checked_and_fixed_chord.extend([notes_events[0]])
else:
checked_and_fixed_chord.extend(chord)
else:
checked_and_fixed_chord.extend(chord)
checked_and_fixed_chord.sort(key=lambda x: x[pitch_index], reverse=True)
return checked_and_fixed_chord
###################################################################################
def find_similar_tones_chord(tones_chord,
max_match_threshold=1,
randomize_chords_matches=False,
custom_chords_list=[]):
chord_p = [0] * 12
for b in tones_chord:
chord_p[b] = 1
match_ratios = []
good_chords = []
if custom_chords_list:
CHORDS = copy.deepcopy([list(x) for x in set(tuple(t) for t in custom_chords_list)])
else:
CHORDS = copy.deepcopy(ALL_CHORDS)
if randomize_chords_matches:
random.shuffle(CHORDS)
for c in CHORDS:
good_chord_p = [0] * 12
for cc in c:
good_chord_p[cc] = 1
good_chords.append(good_chord_p)
match_ratio = sum(i == j for i, j in zip(good_chord_p, chord_p)) / len(good_chord_p)
if match_ratio < max_match_threshold:
match_ratios.append(match_ratio)
else:
match_ratios.append(0)
best_good_chord = good_chords[match_ratios.index(max(match_ratios))]
similar_chord = []
for i in range(len(best_good_chord)):
if best_good_chord[i] == 1:
similar_chord.append(i)
return [similar_chord, max(match_ratios)]
###################################################################################
def generate_tones_chords_progression(number_of_chords_to_generate=100,
start_tones_chord=[],
custom_chords_list=[]):
if start_tones_chord:
start_chord = start_tones_chord
else:
start_chord = random.choice(ALL_CHORDS)
chord = []
chords_progression = [start_chord]
for i in range(number_of_chords_to_generate):
if not chord:
chord = start_chord
if custom_chords_list:
chord = find_similar_tones_chord(chord, randomize_chords_matches=True, custom_chords_list=custom_chords_list)[0]
else:
chord = find_similar_tones_chord(chord, randomize_chords_matches=True)[0]
chords_progression.append(chord)
return chords_progression
###################################################################################
def ascii_texts_search(texts = ['text1', 'text2', 'text3'],
search_query = 'Once upon a time...',
deterministic_matching = False
):
texts_copy = texts
if not deterministic_matching:
texts_copy = copy.deepcopy(texts)
random.shuffle(texts_copy)
clean_texts = []
for t in texts_copy:
text_words_list = [at.split(chr(32)) for at in t.split(chr(10))]
clean_text_words_list = []
for twl in text_words_list:
for w in twl:
clean_text_words_list.append(''.join(filter(str.isalpha, w.lower())))
clean_texts.append(clean_text_words_list)
text_search_query = [at.split(chr(32)) for at in search_query.split(chr(10))]
clean_text_search_query = []
for w in text_search_query:
for ww in w:
clean_text_search_query.append(''.join(filter(str.isalpha, ww.lower())))
if clean_texts[0] and clean_text_search_query:
texts_match_ratios = []
words_match_indexes = []
for t in clean_texts:
word_match_count = 0
wmis = []
for c in clean_text_search_query:
if c in t:
word_match_count += 1
wmis.append(t.index(c))
else:
wmis.append(-1)
words_match_indexes.append(wmis)
words_match_indexes_consequtive = all(abs(b) - abs(a) == 1 for a, b in zip(wmis, wmis[1:]))
words_match_indexes_consequtive_ratio = sum([abs(b) - abs(a) == 1 for a, b in zip(wmis, wmis[1:])]) / len(wmis)
if words_match_indexes_consequtive:
texts_match_ratios.append(word_match_count / len(clean_text_search_query))
else:
texts_match_ratios.append(((word_match_count / len(clean_text_search_query)) + words_match_indexes_consequtive_ratio) / 2)
if texts_match_ratios:
max_text_match_ratio = max(texts_match_ratios)
max_match_ratio_text = texts_copy[texts_match_ratios.index(max_text_match_ratio)]
max_text_words_match_indexes = words_match_indexes[texts_match_ratios.index(max_text_match_ratio)]
return [max_match_ratio_text, max_text_match_ratio, max_text_words_match_indexes]
else:
return None
###################################################################################
def ascii_text_words_counter(ascii_text):
text_words_list = [at.split(chr(32)) for at in ascii_text.split(chr(10))]
clean_text_words_list = []
for twl in text_words_list:
for w in twl:
wo = ''
for ww in w.lower():
if 96 < ord(ww) < 123:
wo += ww
if wo != '':
clean_text_words_list.append(wo)
words = {}
for i in clean_text_words_list:
words[i] = words.get(i, 0) + 1
words_sorted = dict(sorted(words.items(), key=lambda item: item[1], reverse=True))
return len(clean_text_words_list), words_sorted, clean_text_words_list
###################################################################################
def check_and_fix_tones_chord(tones_chord):
lst = tones_chord
if len(lst) == 2:
if lst[1] - lst[0] == 1:
return [lst[-1]]
else:
if 0 in lst and 11 in lst:
lst.remove(0)
return lst
non_consecutive = [lst[0]]
if len(lst) > 2:
for i in range(1, len(lst) - 1):
if lst[i-1] + 1 != lst[i] and lst[i] + 1 != lst[i+1]:
non_consecutive.append(lst[i])
non_consecutive.append(lst[-1])
if 0 in non_consecutive and 11 in non_consecutive:
non_consecutive.remove(0)
return non_consecutive
###################################################################################
def find_closest_tone(tones, tone):
return min(tones, key=lambda x:abs(x-tone))
def advanced_check_and_fix_tones_chord(tones_chord, high_pitch=0):
lst = tones_chord
if 0 < high_pitch < 128:
ht = high_pitch % 12
else:
ht = 12
cht = find_closest_tone(lst, ht)
if len(lst) == 2:
if lst[1] - lst[0] == 1:
return [cht]
else:
if 0 in lst and 11 in lst:
if find_closest_tone([0, 11], cht) == 11:
lst.remove(0)
else:
lst.remove(11)
return lst
non_consecutive = []
if len(lst) > 2:
for i in range(0, len(lst) - 1):
if lst[i] + 1 != lst[i+1]:
non_consecutive.append(lst[i])
if lst[-1] - lst[-2] > 1:
non_consecutive.append(lst[-1])
if cht not in non_consecutive:
non_consecutive.append(cht)
non_consecutive.sort()
if any(abs(non_consecutive[i+1] - non_consecutive[i]) == 1 for i in range(len(non_consecutive) - 1)):
final_list = [x for x in non_consecutive if x == cht or abs(x - cht) > 1]
else:
final_list = non_consecutive
else:
final_list = non_consecutive
if 0 in final_list and 11 in final_list:
if find_closest_tone([0, 11], cht) == 11:
final_list.remove(0)
else:
final_list.remove(11)
if cht in final_list or ht in final_list:
return final_list
else:
return ['Error']
###################################################################################
def create_similarity_matrix(list_of_values, matrix_length=0):
counts = Counter(list_of_values).items()
if matrix_length > 0:
sim_matrix = [0] * max(matrix_length, len(list_of_values))
else:
sim_matrix = [0] * len(counts)
for c in counts:
sim_matrix[c[0]] = c[1]
similarity_matrix = [[0] * len(sim_matrix) for _ in range(len(sim_matrix))]
for i in range(len(sim_matrix)):
for j in range(len(sim_matrix)):
if max(sim_matrix[i], sim_matrix[j]) != 0:
similarity_matrix[i][j] = min(sim_matrix[i], sim_matrix[j]) / max(sim_matrix[i], sim_matrix[j])
return similarity_matrix, sim_matrix
###################################################################################
def augment_enhanced_score_notes(enhanced_score_notes,
timings_divider=16,
full_sorting=True,
timings_shift=0,
pitch_shift=0
):
esn = copy.deepcopy(enhanced_score_notes)
for e in esn:
e[1] = int(e[1] / timings_divider) + timings_shift
e[2] = int(e[2] / timings_divider) + timings_shift
e[4] = e[4] + pitch_shift
if full_sorting:
# Sorting by patch, pitch, then by start-time
esn.sort(key=lambda x: x[6])
esn.sort(key=lambda x: x[4], reverse=True)
esn.sort(key=lambda x: x[1])
return esn
###################################################################################
# This is the end of the TMIDI X Python module
###################################################################################