Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 7,635 Bytes
7db1584 44b601e 7db1584 d6c2065 7db1584 3e23907 7db1584 dffbee6 7db1584 d54ef7f 7db1584 ef8a4e8 2e6fcd5 7db1584 2e6fcd5 7db1584 d54ef7f 7db1584 d54ef7f 7db1584 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import deepsparse
import gradio as gr
from typing import Tuple, List
deepsparse.cpu.print_hardware_capability()
MODEL_ID = "zoo:llama2-7b-gsm8k_llama2_pretrain-pruned60_quantized"
DESCRIPTION = f"""
# Llama 2 Sparse Finetuned on GSM8k with DeepSparse
<img src="https://cdn-uploads.huggingface.co/production/uploads/60466e4b4f40b01b66151416/DOV5q6andhMq83TpAgaU9.jpeg" alt="NM Logo" width="200"/>
Model ID: {MODEL_ID}
π **Experience the power of LLM mathematical reasoning** through [our Llama 2 sparse finetuned](https://arxiv.org/abs/2310.06927) on the [GSM8K dataset](https://huggingface.co/datasets/gsm8k).
GSM8K, short for Grade School Math 8K, is a collection of 8.5K high-quality linguistically diverse grade school math word problems, designed to challenge question-answering systems with multi-step reasoning.
Observe the model's performance in deciphering complex math questions and offering detailed step-by-step solutions.
## Accelerated Inference on CPUs
The Llama 2 model runs purely on CPU courtesy of [sparse software execution by DeepSparse](https://github.com/neuralmagic/deepsparse/tree/main/research/mpt).
DeepSparse provides accelerated inference by taking advantage of the model's weight sparsity to deliver tokens fast!
![Speedup](https://cdn-uploads.huggingface.co/production/uploads/60466e4b4f40b01b66151416/2XjSvMtX1DO3WY5Rx-L-1.png)
"""
MAX_MAX_NEW_TOKENS = 1024
DEFAULT_MAX_NEW_TOKENS = 200
# Setup the engine
pipe = deepsparse.TextGeneration(model=MODEL_ID, sequence_length=MAX_MAX_NEW_TOKENS, num_cores=8)
def clear_and_save_textbox(message: str) -> Tuple[str, str]:
return "", message
def display_input(
message: str, history: List[Tuple[str, str]]
) -> List[Tuple[str, str]]:
history.append((message, ""))
return history
def delete_prev_fn(history: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], str]:
try:
message, _ = history.pop()
except IndexError:
message = ""
return history, message or ""
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
gr.Markdown(DESCRIPTION)
with gr.Column():
gr.Markdown("""### Sparse Finetuned Llama Demo""")
with gr.Group():
chatbot = gr.Chatbot(label="Chatbot")
with gr.Row():
textbox = gr.Textbox(
container=False,
placeholder="Type a message...",
scale=10,
)
submit_button = gr.Button(
"Submit", variant="primary", scale=1, min_width=0
)
with gr.Row():
retry_button = gr.Button("π Retry", variant="secondary")
undo_button = gr.Button("β©οΈ Undo", variant="secondary")
clear_button = gr.Button("ποΈ Clear", variant="secondary")
saved_input = gr.State()
gr.Examples(
examples=[
"James decides to run 3 sprints 3 times a week. He runs 60 meters each sprint. How many total meters does he run a week?",
"Claire makes a 3 egg omelet every morning for breakfast. How many dozens of eggs will she eat in 4 weeks?",
"Gretchen has 110 coins. There are 30 more gold coins than silver coins. How many gold coins does Gretchen have?",
],
inputs=[textbox],
)
max_new_tokens = gr.Slider(
label="Max new tokens",
value=DEFAULT_MAX_NEW_TOKENS,
minimum=0,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
interactive=True,
info="The maximum numbers of new tokens",
)
temperature = gr.Slider(
label="Temperature",
value=0.3,
minimum=0.05,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
)
# Generation inference
def generate(
message,
history,
max_new_tokens: int,
temperature: float,
):
generation_config = {
"max_new_tokens": max_new_tokens,
"temperature": temperature,
}
inference = pipe(sequences=message, streaming=True, **generation_config)
history[-1][1] += message
for token in inference:
history[-1][1] += token.generations[0].text
yield history
# history[-1][1] += inference.generations[0].text
print(pipe.timer_manager)
# return history
textbox.submit(
fn=clear_and_save_textbox,
inputs=textbox,
outputs=[textbox, saved_input],
api_name=False,
queue=False,
).then(
fn=display_input,
inputs=[saved_input, chatbot],
outputs=chatbot,
api_name=False,
queue=False,
).success(
generate,
inputs=[
saved_input,
chatbot,
max_new_tokens,
temperature,
],
outputs=[chatbot],
api_name=False,
)
submit_button.click(
fn=clear_and_save_textbox,
inputs=textbox,
outputs=[textbox, saved_input],
api_name=False,
queue=False,
).then(
fn=display_input,
inputs=[saved_input, chatbot],
outputs=chatbot,
api_name=False,
queue=False,
).success(
generate,
inputs=[
saved_input,
chatbot,
max_new_tokens,
temperature,
],
outputs=[chatbot],
api_name=False,
)
retry_button.click(
fn=delete_prev_fn,
inputs=chatbot,
outputs=[chatbot, saved_input],
api_name=False,
queue=False,
).then(
fn=display_input,
inputs=[saved_input, chatbot],
outputs=chatbot,
api_name=False,
queue=False,
).then(
generate,
inputs=[
saved_input,
chatbot,
max_new_tokens,
temperature,
],
outputs=[chatbot],
api_name=False,
)
undo_button.click(
fn=delete_prev_fn,
inputs=chatbot,
outputs=[chatbot, saved_input],
api_name=False,
queue=False,
).then(
fn=lambda x: x,
inputs=[saved_input],
outputs=textbox,
api_name=False,
queue=False,
)
clear_button.click(
fn=lambda: ([], ""),
outputs=[chatbot, saved_input],
queue=False,
api_name=False,
)
demo.queue().launch()
|