Spaces:
Runtime error
Runtime error
import os | |
os.system("pip install git+https://github.com/suno-ai/bark.git") | |
from bark.generation import SUPPORTED_LANGS | |
from bark import SAMPLE_RATE, generate_audio | |
from scipy.io.wavfile import write as write_wav | |
from datetime import datetime | |
import shutil | |
import gradio as gr | |
import sys | |
import string | |
import time | |
import argparse | |
import json | |
import numpy as np | |
# import IPython | |
# from IPython.display import Audio | |
import torch | |
from TTS.tts.utils.synthesis import synthesis | |
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols | |
try: | |
from TTS.utils.audio import AudioProcessor | |
except: | |
from TTS.utils.audio import AudioProcessor | |
from TTS.tts.models import setup_model | |
from TTS.config import load_config | |
from TTS.tts.models.vits import * | |
from TTS.tts.utils.speakers import SpeakerManager | |
from pydub import AudioSegment | |
# from google.colab import files | |
import librosa | |
from scipy.io.wavfile import write, read | |
import subprocess | |
''' | |
from google.colab import drive | |
drive.mount('/content/drive') | |
src_path = os.path.join(os.path.join(os.path.join(os.path.join(os.getcwd(), 'drive'), 'MyDrive'), 'Colab Notebooks'), 'best_model_latest.pth.tar') | |
dst_path = os.path.join(os.getcwd(), 'best_model.pth.tar') | |
shutil.copy(src_path, dst_path) | |
''' | |
TTS_PATH = "TTS/" | |
# add libraries into environment | |
sys.path.append(TTS_PATH) # set this if TTS is not installed globally | |
# Paths definition | |
OUT_PATH = 'out/' | |
# create output path | |
os.makedirs(OUT_PATH, exist_ok=True) | |
# model vars | |
MODEL_PATH = 'best_model.pth.tar' | |
CONFIG_PATH = 'config.json' | |
TTS_LANGUAGES = "language_ids.json" | |
TTS_SPEAKERS = "speakers.json" | |
USE_CUDA = torch.cuda.is_available() | |
# load the config | |
C = load_config(CONFIG_PATH) | |
# load the audio processor | |
ap = AudioProcessor(**C.audio) | |
speaker_embedding = None | |
C.model_args['d_vector_file'] = TTS_SPEAKERS | |
C.model_args['use_speaker_encoder_as_loss'] = False | |
model = setup_model(C) | |
model.language_manager.set_language_ids_from_file(TTS_LANGUAGES) | |
# print(model.language_manager.num_languages, model.embedded_language_dim) | |
# print(model.emb_l) | |
cp = torch.load(MODEL_PATH, map_location=torch.device('cpu')) | |
# remove speaker encoder | |
model_weights = cp['model'].copy() | |
for key in list(model_weights.keys()): | |
if "speaker_encoder" in key: | |
del model_weights[key] | |
model.load_state_dict(model_weights) | |
model.eval() | |
if USE_CUDA: | |
model = model.cuda() | |
# synthesize voice | |
use_griffin_lim = False | |
# Paths definition | |
CONFIG_SE_PATH = "config_se.json" | |
CHECKPOINT_SE_PATH = "SE_checkpoint.pth.tar" | |
# Load the Speaker encoder | |
SE_speaker_manager = SpeakerManager(encoder_model_path=CHECKPOINT_SE_PATH, encoder_config_path=CONFIG_SE_PATH, use_cuda=USE_CUDA) | |
# Define helper function | |
def compute_spec(ref_file): | |
y, sr = librosa.load(ref_file, sr=ap.sample_rate) | |
spec = ap.spectrogram(y) | |
spec = torch.FloatTensor(spec).unsqueeze(0) | |
return spec | |
def voice_conversion(ta, ra, da): | |
target_audio = 'target.wav' | |
reference_audio = 'reference.wav' | |
driving_audio = 'driving.wav' | |
write(target_audio, ta[0], ta[1]) | |
write(reference_audio, ra[0], ra[1]) | |
write(driving_audio, da[0], da[1]) | |
# !ffmpeg-normalize $target_audio -nt rms -t=-27 -o $target_audio -ar 16000 -f | |
# !ffmpeg-normalize $reference_audio -nt rms -t=-27 -o $reference_audio -ar 16000 -f | |
# !ffmpeg-normalize $driving_audio -nt rms -t=-27 -o $driving_audio -ar 16000 -f | |
files = [target_audio, reference_audio, driving_audio] | |
for file in files: | |
subprocess.run(["ffmpeg-normalize", file, "-nt", "rms", "-t=-27", "-o", file, "-ar", "16000", "-f"]) | |
# ta_ = read(target_audio) | |
target_emb = SE_speaker_manager.compute_d_vector_from_clip([target_audio]) | |
target_emb = torch.FloatTensor(target_emb).unsqueeze(0) | |
driving_emb = SE_speaker_manager.compute_d_vector_from_clip([reference_audio]) | |
driving_emb = torch.FloatTensor(driving_emb).unsqueeze(0) | |
# Convert the voice | |
driving_spec = compute_spec(driving_audio) | |
y_lengths = torch.tensor([driving_spec.size(-1)]) | |
if USE_CUDA: | |
ref_wav_voc, _, _ = model.voice_conversion(driving_spec.cuda(), y_lengths.cuda(), driving_emb.cuda(), target_emb.cuda()) | |
ref_wav_voc = ref_wav_voc.squeeze().cpu().detach().numpy() | |
else: | |
ref_wav_voc, _, _ = model.voice_conversion(driving_spec, y_lengths, driving_emb, target_emb) | |
ref_wav_voc = ref_wav_voc.squeeze().detach().numpy() | |
# print("Reference Audio after decoder:") | |
# IPython.display.display(Audio(ref_wav_voc, rate=ap.sample_rate)) | |
return (ap.sample_rate, ref_wav_voc) | |
def generate_text_to_speech(text_prompt, selected_speaker, text_temp, waveform_temp): | |
audio_array = generate_audio(text_prompt, selected_speaker, text_temp, waveform_temp) | |
now = datetime.now() | |
date_str = now.strftime("%m-%d-%Y") | |
time_str = now.strftime("%H-%M-%S") | |
outputs_folder = os.path.join(os.getcwd(), "outputs") | |
if not os.path.exists(outputs_folder): | |
os.makedirs(outputs_folder) | |
sub_folder = os.path.join(outputs_folder, date_str) | |
if not os.path.exists(sub_folder): | |
os.makedirs(sub_folder) | |
file_name = f"audio_{time_str}.wav" | |
file_path = os.path.join(sub_folder, file_name) | |
write_wav(file_path, SAMPLE_RATE, audio_array) | |
return file_path | |
speakers_list = [] | |
for lang, code in SUPPORTED_LANGS: | |
for n in range(10): | |
speakers_list.append(f"{code}_speaker_{n}") | |
examples1 = [["ref.wav", "Bark.wav", "Bark.wav"]] | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
f""" # <center>🐶🎶🥳 - Bark with Voice Cloning</center> | |
### <center>🤗 - Powered by [Bark](https://huggingface.co/spaces/suno/bark) and [YourTTS](https://github.com/Edresson/YourTTS). Inspired by [bark-webui](https://github.com/makawy7/bark-webui).</center> | |
1. You can duplicate and use it with a GPU: <a href="https://huggingface.co/spaces/{os.getenv('SPACE_ID')}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a> | |
2. First use Bark to generate audio from text and then use YourTTS to get new audio in a custom voice you like. Easy to use! | |
3. For voice cloning, longer reference audio (~90s) will generally lead to better quality of the cloned speech. Also, please make sure the input audio generated by Bark is not too short. | |
""" | |
) | |
with gr.Row().style(equal_height=True): | |
inp1 = gr.Textbox(label="Input Text", lines=4, placeholder="Enter text here...") | |
inp3 = gr.Slider( | |
0.1, | |
1.0, | |
value=0.7, | |
label="Generation Temperature", | |
info="1.0 more diverse, 0.1 more conservative", | |
) | |
inp4 = gr.Slider( | |
0.1, 1.0, value=0.7, label="Waveform Temperature", info="1.0 more diverse, 0.1 more conservative" | |
) | |
with gr.Row().style(equal_height=True): | |
inp2 = gr.Dropdown(speakers_list, value=speakers_list[1], label="Acoustic Prompt") | |
button = gr.Button("Generate using Bark") | |
out1 = gr.Audio(label="Generated Audio") | |
button.click(generate_text_to_speech, [inp1, inp2, inp3, inp4], [out1]) | |
with gr.Row().style(equal_height=True): | |
inp5 = gr.Audio(label="Upload Reference Audio for Voice Cloning Here") | |
inp6 = out1 | |
inp7 = out1 | |
btn = gr.Button("Generate using YourTTS") | |
out2 = gr.Audio(label="Generated Audio in a Custom Voice") | |
btn.click(voice_conversion, [inp5, inp6, inp7], [out2]) | |
gr.Examples(examples=examples1, fn=voice_conversion, inputs=[inp5, inp6, inp7], | |
outputs=[out2], cache_examples=True) | |
gr.Markdown( | |
""" ### <center>NOTE: Please do not generate any audio that is potentially harmful to any person or organization❗</center> | |
""" | |
) | |
gr.Markdown( | |
""" | |
### <center>😄 - You may also apply [VoiceFixer](https://huggingface.co/spaces/Kevin676/VoiceFixer) to the generated audio in order to enhance the speech.</center> | |
## 🌎 Foreign Language | |
Bark supports various languages out-of-the-box and automatically determines language from input text. \ | |
When prompted with code-switched text, Bark will even attempt to employ the native accent for the respective languages in the same voice. | |
Try the prompt: | |
``` | |
Buenos días Miguel. Tu colega piensa que tu alemán es extremadamente malo. But I suppose your english isn't terrible. | |
``` | |
## 🤭 Non-Speech Sounds | |
Below is a list of some known non-speech sounds, but we are finding more every day. \ | |
Please let us know if you find patterns that work particularly well on Discord! | |
* [laughter] | |
* [laughs] | |
* [sighs] | |
* [music] | |
* [gasps] | |
* [clears throat] | |
* — or ... for hesitations | |
* ♪ for song lyrics | |
* capitalization for emphasis of a word | |
* MAN/WOMAN: for bias towards speaker | |
Try the prompt: | |
``` | |
" [clears throat] Hello, my name is Suno. And, uh — and I like pizza. [laughs] But I also have other interests such as... ♪ singing ♪." | |
``` | |
## 🎶 Music | |
Bark can generate all types of audio, and, in principle, doesn't see a difference between speech and music. \ | |
Sometimes Bark chooses to generate text as music, but you can help it out by adding music notes around your lyrics. | |
Try the prompt: | |
``` | |
♪ In the jungle, the mighty jungle, the lion barks tonight ♪ | |
``` | |
## 🧬 Voice Cloning | |
Bark has the capability to fully clone voices - including tone, pitch, emotion and prosody. \ | |
The model also attempts to preserve music, ambient noise, etc. from input audio. \ | |
However, to mitigate misuse of this technology, we limit the audio history prompts to a limited set of Suno-provided, fully synthetic options to choose from. | |
## 👥 Speaker Prompts | |
You can provide certain speaker prompts such as NARRATOR, MAN, WOMAN, etc. \ | |
Please note that these are not always respected, especially if a conflicting audio history prompt is given. | |
Try the prompt: | |
``` | |
WOMAN: I would like an oatmilk latte please. | |
MAN: Wow, that's expensive! | |
``` | |
## Details | |
Bark model by [Suno](https://suno.ai/), including official [code](https://github.com/suno-ai/bark) and model weights. \ | |
Gradio demo supported by 🤗 Hugging Face. Bark is licensed under a non-commercial license: CC-BY 4.0 NC, see details on [GitHub](https://github.com/suno-ai/bark). | |
""" | |
) | |
gr.HTML(''' | |
<div class="footer"> | |
<p>🎶🖼️🎡 - It’s the intersection of technology and liberal arts that makes our hearts sing — Steve Jobs | |
</p> | |
</div> | |
''') | |
demo.queue().launch(show_error=True) |