Spaces:
Runtime error
Runtime error
from tqdm.auto import trange | |
from PIL import Image | |
import gradio as gr | |
import numpy as np | |
import pyrender | |
import trimesh | |
import scipy | |
import torch | |
import cv2 | |
import os | |
class MidasDepth(object): | |
def __init__(self, model_type="DPT_Large", device=torch.device("cuda" if torch.cuda.is_available() else "cpu")): | |
self.device = device | |
self.midas = torch.hub.load("intel-isl/MiDaS", model_type).to(self.device).eval().requires_grad_(False) | |
self.transform = torch.hub.load("intel-isl/MiDaS", "transforms").dpt_transform | |
def get_depth(self, image): | |
if not isinstance(image, np.ndarray): | |
image = np.asarray(image) | |
if (image > 1).any(): | |
image = image.astype("float64") / 255. | |
with torch.inference_mode(): | |
batch = self.transform(image[..., :3]).to(self.device) | |
prediction = self.midas(batch) | |
prediction = torch.nn.functional.interpolate( | |
prediction.unsqueeze(1), | |
size=image.shape[:2], | |
mode="bicubic", | |
align_corners=False, | |
).squeeze() | |
return prediction.detach().cpu().numpy() | |
def process_depth(dep): | |
depth = dep.copy() | |
depth -= depth.min() | |
depth /= depth.max() | |
depth = 1 / np.clip(depth, 0.2, 1) | |
blurred = cv2.medianBlur(depth, 5) # 9 not available because it requires 8-bit | |
maxd = cv2.dilate(blurred, np.ones((3, 3))) | |
mind = cv2.erode(blurred, np.ones((3, 3))) | |
edges = maxd - mind | |
threshold = .05 # Better to have false positives | |
pick_edges = edges > threshold | |
return depth, pick_edges | |
def make_mesh(pic, depth, pick_edges): | |
faces = [] | |
im = np.asarray(pic) | |
grid = np.mgrid[0:im.shape[0], 0:im.shape[1]].transpose(1, 2, 0 | |
).reshape(-1, 2)[..., ::-1] | |
flat_grid = grid[:, 1] * im.shape[1] + grid[:, 0] | |
positions = np.concatenate(((grid - np.array(im.shape[:-1])[np.newaxis, :] | |
/ 2) / im.shape[1] * 2, | |
depth.flatten()[flat_grid][..., np.newaxis]), | |
axis=-1) | |
positions[:, :-1] *= positions[:, -1:] | |
positions[:, 1] *= -1 | |
colors = im.reshape(-1, 3)[flat_grid] | |
c = lambda x, y: y * im.shape[1] + x | |
for y in trange(im.shape[0]): | |
for x in range(im.shape[1]): | |
if pick_edges[y, x]: | |
continue | |
if x > 0 and y > 0: | |
faces.append([c(x, y), c(x, y - 1), c(x - 1, y)]) | |
if x < im.shape[1] - 1 and y < im.shape[0] - 1: | |
faces.append([c(x, y), c(x, y + 1), c(x + 1, y)]) | |
face_colors = np.asarray([colors[i[0]] for i in faces]) | |
tri_mesh = trimesh.Trimesh(vertices=positions * np.array([1.0, 1.0, -1.0]), | |
faces=faces, | |
face_colors=np.concatenate((face_colors, | |
face_colors[..., -1:] | |
* 0 + 255), | |
axis=-1).reshape(-1, 4), | |
smooth=False, | |
) | |
return tri_mesh | |
def args_to_mat(tx, ty, tz, rx, ry, rz): | |
mat = np.eye(4) | |
mat[:3, :3] = scipy.spatial.transform.Rotation.from_euler("XYZ", (rx, ry, rz)).as_matrix() | |
mat[:3, 3] = tx, ty, tz | |
return mat | |
def render(mesh, mat): | |
mesh = pyrender.mesh.Mesh.from_trimesh(mesh, smooth=False) | |
scene = pyrender.Scene(ambient_light=np.array([1.0, 1.0, 1.0])) | |
camera = pyrender.PerspectiveCamera(yfov=np.pi / 2, aspectRatio=1.0) | |
scene.add(camera, pose=mat) | |
scene.add(mesh) | |
r = pyrender.OffscreenRenderer(1024, 1024) | |
rgb, d = r.render(scene, pyrender.constants.RenderFlags.FLAT) | |
mask = d == 0 | |
rgb = rgb.copy() | |
rgb[mask] = 0 | |
res = Image.fromarray(np.concatenate((rgb, | |
((mask[..., np.newaxis]) == 0) | |
.astype(np.uint8) * 255), axis=-1)) | |
return res | |
def main(): | |
os.environ["PYOPENGL_PLATFORM"] = "egl" # "osmesa" | |
midas = MidasDepth() | |
def fn(pic, *args): | |
depth, pick_edges = process_depth(midas.get_depth(pic)) | |
mesh = make_mesh(pic, depth, pick_edges) | |
frame = render(mesh, args_to_mat(*args)) | |
return np.asarray(frame), (255 / np.asarray(depth)).astype(np.uint8), None | |
interface = gr.Interface(fn=fn, inputs=[ | |
gr.inputs.Image(label="src", type="numpy"), | |
gr.inputs.Number(label="tx", default=0.0), | |
gr.inputs.Number(label="ty", default=0.0), | |
gr.inputs.Number(label="tz", default=0.0), | |
gr.inputs.Number(label="rx", default=0.0), | |
gr.inputs.Number(label="ry", default=0.0), | |
gr.inputs.Number(label="rz", default=0.0) | |
], outputs=[ | |
gr.outputs.Image(type="numpy", label="result"), | |
gr.outputs.Image(type="numpy", label="depth"), | |
gr.outputs.Video(label="interpolated") | |
], title="DALL·E 6D", description="Lift DALL·E 2 (or any other model) into 3D!") | |
gr.TabbedInterface([interface], ["Warp 3D images"]).launch() | |
if __name__ == '__main__': | |
main() | |