Let's see.
Browse files- app.py +41 -2
- requirements.txt +0 -1
app.py
CHANGED
@@ -1,16 +1,54 @@
|
|
1 |
from depth import MidasDepth
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
-
import
|
5 |
|
6 |
|
7 |
depth_estimator = MidasDepth()
|
8 |
|
9 |
|
10 |
def get_depth(rgb):
|
|
|
11 |
depth = depth_estimator.get_depth(rgb)
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
|
16 |
gr.Interface(fn=get_depth, inputs=[
|
@@ -18,5 +56,6 @@ gr.Interface(fn=get_depth, inputs=[
|
|
18 |
], outputs=[
|
19 |
gr.components.Image(type="pil", label="image"),
|
20 |
gr.components.Image(type="numpy", label="depth"),
|
|
|
21 |
|
22 |
]).launch(share=True)
|
|
|
1 |
from depth import MidasDepth
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
+
import tempfile
|
5 |
|
6 |
|
7 |
depth_estimator = MidasDepth()
|
8 |
|
9 |
|
10 |
def get_depth(rgb):
|
11 |
+
rgb = rgb.convert("RGB")
|
12 |
depth = depth_estimator.get_depth(rgb)
|
13 |
|
14 |
+
h, w, _ = rgb.shape
|
15 |
+
grid = np.mgrid[0:h, 0:w].transpose(1, 2, 0
|
16 |
+
).reshape(-1, 2)[..., ::-1]
|
17 |
+
flat_grid = grid[:, 1] * w + grid[:, 0]
|
18 |
+
|
19 |
+
positions = np.concatenate(((grid - np.array([[w, h]])
|
20 |
+
/ 2) / w * 2,
|
21 |
+
depth.flatten()[flat_grid][..., np.newaxis]),
|
22 |
+
axis=-1)
|
23 |
+
positions[:, :-1] *= positions[:, -1:]
|
24 |
+
positions[:, :2] *= -1
|
25 |
+
|
26 |
+
pick_edges = depth < 0
|
27 |
+
y, x = (t.flatten() for t in np.mgrid[0:h, 0:w])
|
28 |
+
faces = np.concatenate((
|
29 |
+
np.stack((y * w + x,
|
30 |
+
(y - 1) * w + x,
|
31 |
+
y * w + (x - 1)), axis=-1)
|
32 |
+
[(~pick_edges.flatten()) * (x > 0) * (y > 0)],
|
33 |
+
np.stack((y * w + x,
|
34 |
+
(y + 1) * w + x,
|
35 |
+
y * w + (x + 1)), axis=-1)
|
36 |
+
[(~pick_edges.flatten()) * (x < w - 1) * (y < im.shape[0] - 1)]
|
37 |
+
))
|
38 |
+
|
39 |
+
tf = tempfile.NamedTemporaryFile(suffix=".obj").name
|
40 |
+
save_obj(positions, rgb.reshape(-1, 3), faces, tf)
|
41 |
+
|
42 |
+
return rgb, (depth.clip(0, 64) * 1024).astype("uint16"), tf
|
43 |
+
|
44 |
+
|
45 |
+
def save_obj(positions, rgb, faces, filename):
|
46 |
+
with open(filename, "w") as f:
|
47 |
+
for position, color in zip(positions, rgb):
|
48 |
+
f.write(
|
49 |
+
f"v {' '.join(map(str, position))} {' '.join(map(str, color))}")
|
50 |
+
for face in faces:
|
51 |
+
f.write(f"f {' '.join(map(str, face))}")
|
52 |
|
53 |
|
54 |
gr.Interface(fn=get_depth, inputs=[
|
|
|
56 |
], outputs=[
|
57 |
gr.components.Image(type="pil", label="image"),
|
58 |
gr.components.Image(type="numpy", label="depth"),
|
59 |
+
gr.components.Model3D()
|
60 |
|
61 |
]).launch(share=True)
|
requirements.txt
CHANGED
@@ -1,3 +1,2 @@
|
|
1 |
torch
|
2 |
-
opencv-python
|
3 |
timm
|
|
|
1 |
torch
|
|
|
2 |
timm
|