Spaces:
Running
Running
File size: 1,498 Bytes
a9d15f3 050a39a a9d15f3 050a39a a9d15f3 050a39a a9d15f3 050a39a a9d15f3 050a39a a9d15f3 050a39a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import gradio as gr
import requests
from PIL import Image
from io import BytesIO
import os
# Load API Token from environment variable
API_TOKEN = os.getenv("HF_API_TOKEN") # Ensure you've set this environment variable
# Hugging Face Inference API URL
API_URL = "https://api-inference.huggingface.co/models/Benevolent/PonyDiffusionV10"
# Function to call Hugging Face API and get the generated image
def generate_image(prompt):
headers = {"Authorization": f"Bearer {API_TOKEN}"}
data = {"inputs": prompt}
response = requests.post(API_URL, headers=headers, json=data)
if response.status_code == 200:
image_bytes = BytesIO(response.content)
image = Image.open(image_bytes)
return image
else:
return f"Error: {response.status_code}, {response.text}"
# Create Gradio interface
def create_ui():
with gr.Blocks() as ui:
gr.Markdown("## PonyDiffusionV10 - Text to Image Generator")
with gr.Row():
prompt_input = gr.Textbox(label="Enter a Prompt", placeholder="Describe the image you want to generate", lines=3)
generate_button = gr.Button("Generate Image")
with gr.Row():
output_image = gr.Image(label="Generated Image")
# Link the button to the function
generate_button.click(fn=generate_image, inputs=prompt_input, outputs=output_image)
return ui
# Run the interface
if __name__ == "__main__":
create_ui().launch() |