File size: 22,379 Bytes
f61a8e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
import os
import shutil
from enum import Enum

import cv2
import einops
import gradio as gr
import numpy as np
import torch
import torch.nn.functional as F
import torchvision.transforms as T
from blendmodes.blend import BlendType, blendLayers
from PIL import Image
from pytorch_lightning import seed_everything
from safetensors.torch import load_file
from skimage import exposure

import src.import_util  # noqa: F401
from ControlNet.annotator.canny import CannyDetector
from ControlNet.annotator.hed import HEDdetector
from ControlNet.annotator.util import HWC3
from ControlNet.cldm.model import create_model, load_state_dict
from gmflow_module.gmflow.gmflow import GMFlow
from flow.flow_utils import get_warped_and_mask
from src.config import RerenderConfig
from src.controller import AttentionControl
from src.ddim_v_hacked import DDIMVSampler
from src.img_util import find_flat_region, numpy2tensor
from src.video_util import (frame_to_video, get_fps, get_frame_count,
                            prepare_frames)

import huggingface_hub

repo_name = 'Anonymous-sub/Rerender'

huggingface_hub.hf_hub_download(repo_name,
                                'pexels-koolshooters-7322716.mp4',
                                local_dir='videos')
huggingface_hub.hf_hub_download(
    repo_name,
    'pexels-antoni-shkraba-8048492-540x960-25fps.mp4',
    local_dir='videos')
huggingface_hub.hf_hub_download(
    repo_name,
    'pexels-cottonbro-studio-6649832-960x506-25fps.mp4',
    local_dir='videos')

inversed_model_dict = {v: k for k, v in model_dict.items()}

to_tensor = T.PILToTensor()
blur = T.GaussianBlur(kernel_size=(9, 9), sigma=(18, 18))
device = 'cuda' if torch.cuda.is_available() else 'cpu'


class ProcessingState(Enum):
    NULL = 0
    FIRST_IMG = 1
    KEY_IMGS = 2


class GlobalState:

    def __init__(self):
        self.sd_model = None
        self.ddim_v_sampler = None
        self.detector_type = None
        self.detector = None
        self.controller = None
        self.processing_state = ProcessingState.NULL
        flow_model = GMFlow(
            feature_channels=128,
            num_scales=1,
            upsample_factor=8,
            num_head=1,
            attention_type='swin',
            ffn_dim_expansion=4,
            num_transformer_layers=6,
        ).to(device)

        checkpoint = torch.load('models/gmflow_sintel-0c07dcb3.pth',
                                map_location=lambda storage, loc: storage)
        weights = checkpoint['model'] if 'model' in checkpoint else checkpoint
        flow_model.load_state_dict(weights, strict=False)
        flow_model.eval()
        self.flow_model = flow_model

    def update_controller(self, inner_strength, mask_period, cross_period,
                          ada_period, warp_period):
        self.controller = AttentionControl(inner_strength, mask_period,
                                           cross_period, ada_period,
                                           warp_period)

    def update_sd_model(self, sd_model, control_type):
        if sd_model == self.sd_model:
            return
        self.sd_model = sd_model
        model = create_model('./ControlNet/models/cldm_v15.yaml').cpu()
        if control_type == 'HED':
            model.load_state_dict(
                load_state_dict(huggingface_hub.hf_hub_download(
                    'lllyasviel/ControlNet', './models/control_sd15_hed.pth'),
                                location=device))
        elif control_type == 'canny':
            model.load_state_dict(
                load_state_dict(huggingface_hub.hf_hub_download(
                    'lllyasviel/ControlNet', 'models/control_sd15_canny.pth'),
                                location=device))
        model.to(device)
        sd_model_path = model_dict[sd_model]
        if len(sd_model_path) > 0:
            model_ext = os.path.splitext(sd_model_path)[1]
            downloaded_model = huggingface_hub.hf_hub_download(
                repo_name, sd_model_path)
            if model_ext == '.safetensors':
                model.load_state_dict(load_file(downloaded_model),
                                      strict=False)
            elif model_ext == '.ckpt' or model_ext == '.pth':
                model.load_state_dict(
                    torch.load(downloaded_model)['state_dict'], strict=False)

        try:
            model.first_stage_model.load_state_dict(torch.load(
                huggingface_hub.hf_hub_download(
                    'stabilityai/sd-vae-ft-mse-original',
                    'vae-ft-mse-840000-ema-pruned.ckpt'))['state_dict'],
                                                    strict=False)
        except Exception:
            print('Warning: We suggest you download the fine-tuned VAE',
                  'otherwise the generation quality will be degraded')

        self.ddim_v_sampler = DDIMVSampler(model)

    def clear_sd_model(self):
        self.sd_model = None
        self.ddim_v_sampler = None
        if device == 'cuda':
            torch.cuda.empty_cache()

    def update_detector(self, control_type, canny_low=100, canny_high=200):
        if self.detector_type == control_type:
            return
        if control_type == 'HED':
            self.detector = HEDdetector()
        elif control_type == 'canny':
            canny_detector = CannyDetector()
            low_threshold = canny_low
            high_threshold = canny_high

            def apply_canny(x):
                return canny_detector(x, low_threshold, high_threshold)

            self.detector = apply_canny


global_state = GlobalState()
global_video_path = None
video_frame_count = None


def create_cfg(input_path, prompt, image_resolution, control_strength,
               color_preserve, left_crop, right_crop, top_crop, bottom_crop,
               control_type, low_threshold, high_threshold, ddim_steps, scale,
               seed, sd_model, a_prompt, n_prompt, interval, keyframe_count,
               x0_strength, use_constraints, cross_start, cross_end,
               style_update_freq, warp_start, warp_end, mask_start, mask_end,
               ada_start, ada_end, mask_strength, inner_strength,
               smooth_boundary):
    use_warp = 'shape-aware fusion' in use_constraints
    use_mask = 'pixel-aware fusion' in use_constraints
    use_ada = 'color-aware AdaIN' in use_constraints

    if not use_warp:
        warp_start = 1
        warp_end = 0

    if not use_mask:
        mask_start = 1
        mask_end = 0

    if not use_ada:
        ada_start = 1
        ada_end = 0

    input_name = os.path.split(input_path)[-1].split('.')[0]
    frame_count = 2 + keyframe_count * interval
    cfg = RerenderConfig()
    cfg.create_from_parameters(
        input_path,
        os.path.join('result', input_name, 'blend.mp4'),
        prompt,
        a_prompt=a_prompt,
        n_prompt=n_prompt,
        frame_count=frame_count,
        interval=interval,
        crop=[left_crop, right_crop, top_crop, bottom_crop],
        sd_model=sd_model,
        ddim_steps=ddim_steps,
        scale=scale,
        control_type=control_type,
        control_strength=control_strength,
        canny_low=low_threshold,
        canny_high=high_threshold,
        seed=seed,
        image_resolution=image_resolution,
        x0_strength=x0_strength,
        style_update_freq=style_update_freq,
        cross_period=(cross_start, cross_end),
        warp_period=(warp_start, warp_end),
        mask_period=(mask_start, mask_end),
        ada_period=(ada_start, ada_end),
        mask_strength=mask_strength,
        inner_strength=inner_strength,
        smooth_boundary=smooth_boundary,
        color_preserve=color_preserve)
    return cfg


def cfg_to_input(filename):

    cfg = RerenderConfig()
    cfg.create_from_path(filename)
    keyframe_count = (cfg.frame_count - 2) // cfg.interval
    use_constraints = [
        'shape-aware fusion', 'pixel-aware fusion', 'color-aware AdaIN'
    ]

    sd_model = inversed_model_dict.get(cfg.sd_model, 'Stable Diffusion 1.5')

    args = [
        cfg.input_path, cfg.prompt, cfg.image_resolution, cfg.control_strength,
        cfg.color_preserve, *cfg.crop, cfg.control_type, cfg.canny_low,
        cfg.canny_high, cfg.ddim_steps, cfg.scale, cfg.seed, sd_model,
        cfg.a_prompt, cfg.n_prompt, cfg.interval, keyframe_count,
        cfg.x0_strength, use_constraints, *cfg.cross_period,
        cfg.style_update_freq, *cfg.warp_period, *cfg.mask_period,
        *cfg.ada_period, cfg.mask_strength, cfg.inner_strength,
        cfg.smooth_boundary
    ]
    return args


def setup_color_correction(image):
    correction_target = cv2.cvtColor(np.asarray(image.copy()),
                                     cv2.COLOR_RGB2LAB)
    return correction_target


def apply_color_correction(correction, original_image):
    image = Image.fromarray(
        cv2.cvtColor(
            exposure.match_histograms(cv2.cvtColor(np.asarray(original_image),
                                                   cv2.COLOR_RGB2LAB),
                                      correction,
                                      channel_axis=2),
            cv2.COLOR_LAB2RGB).astype('uint8'))

    image = blendLayers(image, original_image, BlendType.LUMINOSITY)

    return image


@torch.no_grad()
def process(*args):
    first_frame = process1(*args)

    keypath = process2(*args)

    return first_frame, keypath


@torch.no_grad()
def process0(*args):
    global global_video_path
    global_video_path = args[0]
    return process(*args[1:])


@torch.no_grad()
def process1(*args):

    global global_video_path
    cfg = create_cfg(global_video_path, *args)
    global global_state
    global_state.update_sd_model(cfg.sd_model, cfg.control_type)
    global_state.update_controller(cfg.inner_strength, cfg.mask_period,
                                   cfg.cross_period, cfg.ada_period,
                                   cfg.warp_period)
    global_state.update_detector(cfg.control_type, cfg.canny_low,
                                 cfg.canny_high)
    global_state.processing_state = ProcessingState.FIRST_IMG

    prepare_frames(cfg.input_path, cfg.input_dir, cfg.image_resolution,
                   cfg.crop)

    ddim_v_sampler = global_state.ddim_v_sampler
    model = ddim_v_sampler.model
    detector = global_state.detector
    controller = global_state.controller
    model.control_scales = [cfg.control_strength] * 13
    model.to(device)

    num_samples = 1
    eta = 0.0
    imgs = sorted(os.listdir(cfg.input_dir))
    imgs = [os.path.join(cfg.input_dir, img) for img in imgs]

    model.cond_stage_model.device = device

    with torch.no_grad():
        frame = cv2.imread(imgs[0])
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        img = HWC3(frame)
        H, W, C = img.shape

        img_ = numpy2tensor(img)

        def generate_first_img(img_, strength):
            encoder_posterior = model.encode_first_stage(img_.to(device))
            x0 = model.get_first_stage_encoding(encoder_posterior).detach()

            detected_map = detector(img)
            detected_map = HWC3(detected_map)

            control = torch.from_numpy(
                detected_map.copy()).float().to(device) / 255.0
            control = torch.stack([control for _ in range(num_samples)], dim=0)
            control = einops.rearrange(control, 'b h w c -> b c h w').clone()
            cond = {
                'c_concat': [control],
                'c_crossattn': [
                    model.get_learned_conditioning(
                        [cfg.prompt + ', ' + cfg.a_prompt] * num_samples)
                ]
            }
            un_cond = {
                'c_concat': [control],
                'c_crossattn':
                [model.get_learned_conditioning([cfg.n_prompt] * num_samples)]
            }
            shape = (4, H // 8, W // 8)

            controller.set_task('initfirst')
            seed_everything(cfg.seed)

            samples, _ = ddim_v_sampler.sample(
                cfg.ddim_steps,
                num_samples,
                shape,
                cond,
                verbose=False,
                eta=eta,
                unconditional_guidance_scale=cfg.scale,
                unconditional_conditioning=un_cond,
                controller=controller,
                x0=x0,
                strength=strength)
            x_samples = model.decode_first_stage(samples)
            x_samples_np = (
                einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
                127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
            return x_samples, x_samples_np

        # When not preserve color, draw a different frame at first and use its
        # color to redraw the first frame.
        if not cfg.color_preserve:
            first_strength = -1
        else:
            first_strength = 1 - cfg.x0_strength

        x_samples, x_samples_np = generate_first_img(img_, first_strength)

        if not cfg.color_preserve:
            color_corrections = setup_color_correction(
                Image.fromarray(x_samples_np[0]))
            global_state.color_corrections = color_corrections
            img_ = apply_color_correction(color_corrections,
                                          Image.fromarray(img))
            img_ = to_tensor(img_).unsqueeze(0)[:, :3] / 127.5 - 1
            x_samples, x_samples_np = generate_first_img(
                img_, 1 - cfg.x0_strength)

        global_state.first_result = x_samples
        global_state.first_img = img

    Image.fromarray(x_samples_np[0]).save(
        os.path.join(cfg.first_dir, 'first.jpg'))

    return x_samples_np[0]


@torch.no_grad()
def process2(*args):
    global global_state
    global global_video_path

    if global_state.processing_state != ProcessingState.FIRST_IMG:
        raise gr.Error('Please generate the first key image before generating'
                       ' all key images')

    cfg = create_cfg(global_video_path, *args)
    global_state.update_sd_model(cfg.sd_model, cfg.control_type)
    global_state.update_detector(cfg.control_type, cfg.canny_low,
                                 cfg.canny_high)
    global_state.processing_state = ProcessingState.KEY_IMGS

    # reset key dir
    shutil.rmtree(cfg.key_dir)
    os.makedirs(cfg.key_dir, exist_ok=True)

    ddim_v_sampler = global_state.ddim_v_sampler
    model = ddim_v_sampler.model
    detector = global_state.detector
    controller = global_state.controller
    flow_model = global_state.flow_model
    model.control_scales = [cfg.control_strength] * 13

    num_samples = 1
    eta = 0.0
    firstx0 = True
    pixelfusion = cfg.use_mask
    imgs = sorted(os.listdir(cfg.input_dir))
    imgs = [os.path.join(cfg.input_dir, img) for img in imgs]

    first_result = global_state.first_result
    first_img = global_state.first_img
    pre_result = first_result
    pre_img = first_img

    for i in range(0, cfg.frame_count - 1, cfg.interval):
        cid = i + 1
        frame = cv2.imread(imgs[i + 1])
        print(cid)
        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        img = HWC3(frame)
        H, W, C = img.shape

        if cfg.color_preserve or global_state.color_corrections is None:
            img_ = numpy2tensor(img)
        else:
            img_ = apply_color_correction(global_state.color_corrections,
                                          Image.fromarray(img))
            img_ = to_tensor(img_).unsqueeze(0)[:, :3] / 127.5 - 1
        encoder_posterior = model.encode_first_stage(img_.to(device))
        x0 = model.get_first_stage_encoding(encoder_posterior).detach()

        detected_map = detector(img)
        detected_map = HWC3(detected_map)

        control = torch.from_numpy(
            detected_map.copy()).float().to(device) / 255.0
        control = torch.stack([control for _ in range(num_samples)], dim=0)
        control = einops.rearrange(control, 'b h w c -> b c h w').clone()
        cond = {
            'c_concat': [control],
            'c_crossattn': [
                model.get_learned_conditioning(
                    [cfg.prompt + ', ' + cfg.a_prompt] * num_samples)
            ]
        }
        un_cond = {
            'c_concat': [control],
            'c_crossattn':
            [model.get_learned_conditioning([cfg.n_prompt] * num_samples)]
        }
        shape = (4, H // 8, W // 8)

        cond['c_concat'] = [control]
        un_cond['c_concat'] = [control]

        image1 = torch.from_numpy(pre_img).permute(2, 0, 1).float()
        image2 = torch.from_numpy(img).permute(2, 0, 1).float()
        warped_pre, bwd_occ_pre, bwd_flow_pre = get_warped_and_mask(
            flow_model, image1, image2, pre_result, False)
        blend_mask_pre = blur(
            F.max_pool2d(bwd_occ_pre, kernel_size=9, stride=1, padding=4))
        blend_mask_pre = torch.clamp(blend_mask_pre + bwd_occ_pre, 0, 1)

        image1 = torch.from_numpy(first_img).permute(2, 0, 1).float()
        warped_0, bwd_occ_0, bwd_flow_0 = get_warped_and_mask(
            flow_model, image1, image2, first_result, False)
        blend_mask_0 = blur(
            F.max_pool2d(bwd_occ_0, kernel_size=9, stride=1, padding=4))
        blend_mask_0 = torch.clamp(blend_mask_0 + bwd_occ_0, 0, 1)

        if firstx0:
            mask = 1 - F.max_pool2d(blend_mask_0, kernel_size=8)
            controller.set_warp(
                F.interpolate(bwd_flow_0 / 8.0,
                              scale_factor=1. / 8,
                              mode='bilinear'), mask)
        else:
            mask = 1 - F.max_pool2d(blend_mask_pre, kernel_size=8)
            controller.set_warp(
                F.interpolate(bwd_flow_pre / 8.0,
                              scale_factor=1. / 8,
                              mode='bilinear'), mask)

        controller.set_task('keepx0, keepstyle')
        seed_everything(cfg.seed)
        samples, intermediates = ddim_v_sampler.sample(
            cfg.ddim_steps,
            num_samples,
            shape,
            cond,
            verbose=False,
            eta=eta,
            unconditional_guidance_scale=cfg.scale,
            unconditional_conditioning=un_cond,
            controller=controller,
            x0=x0,
            strength=1 - cfg.x0_strength)
        direct_result = model.decode_first_stage(samples)

        if not pixelfusion:
            pre_result = direct_result
            pre_img = img
            viz = (
                einops.rearrange(direct_result, 'b c h w -> b h w c') * 127.5 +
                127.5).cpu().numpy().clip(0, 255).astype(np.uint8)

        else:

            blend_results = (1 - blend_mask_pre
                             ) * warped_pre + blend_mask_pre * direct_result
            blend_results = (
                1 - blend_mask_0) * warped_0 + blend_mask_0 * blend_results

            bwd_occ = 1 - torch.clamp(1 - bwd_occ_pre + 1 - bwd_occ_0, 0, 1)
            blend_mask = blur(
                F.max_pool2d(bwd_occ, kernel_size=9, stride=1, padding=4))
            blend_mask = 1 - torch.clamp(blend_mask + bwd_occ, 0, 1)

            encoder_posterior = model.encode_first_stage(blend_results)
            xtrg = model.get_first_stage_encoding(
                encoder_posterior).detach()  # * mask
            blend_results_rec = model.decode_first_stage(xtrg)
            encoder_posterior = model.encode_first_stage(blend_results_rec)
            xtrg_rec = model.get_first_stage_encoding(
                encoder_posterior).detach()
            xtrg_ = (xtrg + 1 * (xtrg - xtrg_rec))  # * mask
            blend_results_rec_new = model.decode_first_stage(xtrg_)
            tmp = (abs(blend_results_rec_new - blend_results).mean(
                dim=1, keepdims=True) > 0.25).float()
            mask_x = F.max_pool2d((F.interpolate(tmp,
                                                 scale_factor=1 / 8.,
                                                 mode='bilinear') > 0).float(),
                                  kernel_size=3,
                                  stride=1,
                                  padding=1)

            mask = (1 - F.max_pool2d(1 - blend_mask, kernel_size=8)
                    )  # * (1-mask_x)

            if cfg.smooth_boundary:
                noise_rescale = find_flat_region(mask)
            else:
                noise_rescale = torch.ones_like(mask)
            masks = []
            for i in range(cfg.ddim_steps):
                if i <= cfg.ddim_steps * cfg.mask_period[
                        0] or i >= cfg.ddim_steps * cfg.mask_period[1]:
                    masks += [None]
                else:
                    masks += [mask * cfg.mask_strength]

            # mask 3
            # xtrg = ((1-mask_x) *
            #         (xtrg + xtrg - xtrg_rec) + mask_x * samples) * mask
            # mask 2
            # xtrg = (xtrg + 1 * (xtrg - xtrg_rec)) * mask
            xtrg = (xtrg + (1 - mask_x) * (xtrg - xtrg_rec)) * mask  # mask 1

            tasks = 'keepstyle, keepx0'
            if not firstx0:
                tasks += ', updatex0'
            if i % cfg.style_update_freq == 0:
                tasks += ', updatestyle'
            controller.set_task(tasks, 1.0)

            seed_everything(cfg.seed)
            samples, _ = ddim_v_sampler.sample(
                cfg.ddim_steps,
                num_samples,
                shape,
                cond,
                verbose=False,
                eta=eta,
                unconditional_guidance_scale=cfg.scale,
                unconditional_conditioning=un_cond,
                controller=controller,
                x0=x0,
                strength=1 - cfg.x0_strength,
                xtrg=xtrg,
                mask=masks,
                noise_rescale=noise_rescale)
            x_samples = model.decode_first_stage(samples)
            pre_result = x_samples
            pre_img = img

            viz = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
                   127.5).cpu().numpy().clip(0, 255).astype(np.uint8)

        Image.fromarray(viz[0]).save(
            os.path.join(cfg.key_dir, f'{cid:04d}.png'))

    key_video_path = os.path.join(cfg.work_dir, 'key.mp4')
    fps = get_fps(cfg.input_path)
    fps //= cfg.interval
    frame_to_video(key_video_path, cfg.key_dir, fps, False)

    return key_video_path