File size: 7,429 Bytes
1f4e6d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import torch
import torch.nn as nn

from .constants import N_MELS


class ConvBlockRes(nn.Module):
    def __init__(self, in_channels, out_channels, momentum=0.01):
        super(ConvBlockRes, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(in_channels=in_channels,
                      out_channels=out_channels,
                      kernel_size=(3, 3),
                      stride=(1, 1),
                      padding=(1, 1),
                      bias=False),
            nn.BatchNorm2d(out_channels, momentum=momentum),
            nn.ReLU(),

            nn.Conv2d(in_channels=out_channels,
                      out_channels=out_channels,
                      kernel_size=(3, 3),
                      stride=(1, 1),
                      padding=(1, 1),
                      bias=False),
            nn.BatchNorm2d(out_channels, momentum=momentum),
            nn.ReLU(),
        )
        if in_channels != out_channels:
            self.shortcut = nn.Conv2d(in_channels, out_channels, (1, 1))
            self.is_shortcut = True
        else:
            self.is_shortcut = False

    def forward(self, x):
        if self.is_shortcut:
            return self.conv(x) + self.shortcut(x)
        else:
            return self.conv(x) + x


class ResEncoderBlock(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, n_blocks=1, momentum=0.01):
        super(ResEncoderBlock, self).__init__()
        self.n_blocks = n_blocks
        self.conv = nn.ModuleList()
        self.conv.append(ConvBlockRes(in_channels, out_channels, momentum))
        for i in range(n_blocks - 1):
            self.conv.append(ConvBlockRes(out_channels, out_channels, momentum))
        self.kernel_size = kernel_size
        if self.kernel_size is not None:
            self.pool = nn.AvgPool2d(kernel_size=kernel_size)

    def forward(self, x):
        for i in range(self.n_blocks):
            x = self.conv[i](x)
        if self.kernel_size is not None:
            return x, self.pool(x)
        else:
            return x


class ResDecoderBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride, n_blocks=1, momentum=0.01):
        super(ResDecoderBlock, self).__init__()
        out_padding = (0, 1) if stride == (1, 2) else (1, 1)
        self.n_blocks = n_blocks
        self.conv1 = nn.Sequential(
            nn.ConvTranspose2d(in_channels=in_channels,
                               out_channels=out_channels,
                               kernel_size=(3, 3),
                               stride=stride,
                               padding=(1, 1),
                               output_padding=out_padding,
                               bias=False),
            nn.BatchNorm2d(out_channels, momentum=momentum),
            nn.ReLU(),
        )
        self.conv2 = nn.ModuleList()
        self.conv2.append(ConvBlockRes(out_channels * 2, out_channels, momentum))
        for i in range(n_blocks-1):
            self.conv2.append(ConvBlockRes(out_channels, out_channels, momentum))

    def forward(self, x, concat_tensor):
        x = self.conv1(x)
        x = torch.cat((x, concat_tensor), dim=1)
        for i in range(self.n_blocks):
            x = self.conv2[i](x)
        return x


class Encoder(nn.Module):
    def __init__(self, in_channels, in_size, n_encoders, kernel_size, n_blocks, out_channels=16, momentum=0.01):
        super(Encoder, self).__init__()
        self.n_encoders = n_encoders
        self.bn = nn.BatchNorm2d(in_channels, momentum=momentum)
        self.layers = nn.ModuleList()
        self.latent_channels = []
        for i in range(self.n_encoders):
            self.layers.append(ResEncoderBlock(in_channels, out_channels, kernel_size, n_blocks, momentum=momentum))
            self.latent_channels.append([out_channels, in_size])
            in_channels = out_channels
            out_channels *= 2
            in_size //= 2
        self.out_size = in_size
        self.out_channel = out_channels

    def forward(self, x):
        concat_tensors = []
        x = self.bn(x)
        for i in range(self.n_encoders):
            _, x = self.layers[i](x)
            concat_tensors.append(_)
        return x, concat_tensors


class Intermediate(nn.Module):
    def __init__(self, in_channels, out_channels, n_inters, n_blocks, momentum=0.01):
        super(Intermediate, self).__init__()
        self.n_inters = n_inters
        self.layers = nn.ModuleList()
        self.layers.append(ResEncoderBlock(in_channels, out_channels, None, n_blocks, momentum))
        for i in range(self.n_inters-1):
            self.layers.append(ResEncoderBlock(out_channels, out_channels, None, n_blocks, momentum))

    def forward(self, x):
        for i in range(self.n_inters):
            x = self.layers[i](x)
        return x


class Decoder(nn.Module):
    def __init__(self, in_channels, n_decoders, stride, n_blocks, momentum=0.01):
        super(Decoder, self).__init__()
        self.layers = nn.ModuleList()
        self.n_decoders = n_decoders
        for i in range(self.n_decoders):
            out_channels = in_channels // 2
            self.layers.append(ResDecoderBlock(in_channels, out_channels, stride, n_blocks, momentum))
            in_channels = out_channels

    def forward(self, x, concat_tensors):
        for i in range(self.n_decoders):
            x = self.layers[i](x, concat_tensors[-1-i])
        return x


class TimbreFilter(nn.Module):
    def __init__(self, latent_rep_channels):
        super(TimbreFilter, self).__init__()
        self.layers = nn.ModuleList()
        for latent_rep in latent_rep_channels:
            self.layers.append(ConvBlockRes(latent_rep[0], latent_rep[0]))

    def forward(self, x_tensors):
        out_tensors = []
        for i, layer in enumerate(self.layers):
            out_tensors.append(layer(x_tensors[i]))
        return out_tensors


class DeepUnet(nn.Module):
    def __init__(self, kernel_size, n_blocks, en_de_layers=5, inter_layers=4, in_channels=1, en_out_channels=16):
        super(DeepUnet, self).__init__()
        self.encoder = Encoder(in_channels, N_MELS, en_de_layers, kernel_size, n_blocks, en_out_channels)
        self.intermediate = Intermediate(self.encoder.out_channel // 2, self.encoder.out_channel, inter_layers, n_blocks)
        self.tf = TimbreFilter(self.encoder.latent_channels)
        self.decoder = Decoder(self.encoder.out_channel, en_de_layers, kernel_size, n_blocks)

    def forward(self, x):
        x, concat_tensors = self.encoder(x)
        x = self.intermediate(x)
        concat_tensors = self.tf(concat_tensors)
        x = self.decoder(x, concat_tensors)
        return x

      
class DeepUnet0(nn.Module):
    def __init__(self, kernel_size, n_blocks, en_de_layers=5, inter_layers=4, in_channels=1, en_out_channels=16):
        super(DeepUnet0, self).__init__()
        self.encoder = Encoder(in_channels, N_MELS, en_de_layers, kernel_size, n_blocks, en_out_channels)
        self.intermediate = Intermediate(self.encoder.out_channel // 2, self.encoder.out_channel, inter_layers, n_blocks)
        self.tf = TimbreFilter(self.encoder.latent_channels)
        self.decoder = Decoder(self.encoder.out_channel, en_de_layers, kernel_size, n_blocks)

    def forward(self, x):
        x, concat_tensors = self.encoder(x)
        x = self.intermediate(x)
        x = self.decoder(x, concat_tensors)
        return x