File size: 17,014 Bytes
1f4e6d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
from collections import deque
from functools import partial
from inspect import isfunction

import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from tqdm import tqdm


def exists(x):
    return x is not None


def default(val, d):
    if exists(val):
        return val
    return d() if isfunction(d) else d


def extract(a, t, x_shape):
    b, *_ = t.shape
    out = a.gather(-1, t)
    return out.reshape(b, *((1,) * (len(x_shape) - 1)))


def noise_like(shape, device, repeat=False):
    def repeat_noise():
        return torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
    def noise():
        return torch.randn(shape, device=device)
    return repeat_noise() if repeat else noise()


def linear_beta_schedule(timesteps, max_beta=0.02):
    """
    linear schedule
    """
    betas = np.linspace(1e-4, max_beta, timesteps)
    return betas


def cosine_beta_schedule(timesteps, s=0.008):
    """
    cosine schedule
    as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
    """
    steps = timesteps + 1
    x = np.linspace(0, steps, steps)
    alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
    alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
    betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
    return np.clip(betas, a_min=0, a_max=0.999)


beta_schedule = {
    "cosine": cosine_beta_schedule,
    "linear": linear_beta_schedule,
}


class GaussianDiffusion(nn.Module):
    def __init__(self, 
                denoise_fn, 
                out_dims=128,
                timesteps=1000, 
                k_step=1000,
                max_beta=0.02,
                spec_min=-12, 
                spec_max=2):
        
        super().__init__()
        self.denoise_fn = denoise_fn
        self.out_dims = out_dims
        betas = beta_schedule['linear'](timesteps, max_beta=max_beta)

        alphas = 1. - betas
        alphas_cumprod = np.cumprod(alphas, axis=0)
        alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])

        timesteps, = betas.shape
        self.num_timesteps = int(timesteps)
        self.k_step = k_step if k_step>0 and k_step<timesteps else timesteps

        self.noise_list = deque(maxlen=4)

        to_torch = partial(torch.tensor, dtype=torch.float32)

        self.register_buffer('betas', to_torch(betas))
        self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
        self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))

        # calculations for diffusion q(x_t | x_{t-1}) and others
        self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
        self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
        self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
        self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
        self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))

        # calculations for posterior q(x_{t-1} | x_t, x_0)
        posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
        # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
        self.register_buffer('posterior_variance', to_torch(posterior_variance))
        # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
        self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
        self.register_buffer('posterior_mean_coef1', to_torch(
            betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
        self.register_buffer('posterior_mean_coef2', to_torch(
            (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))

        self.register_buffer('spec_min', torch.FloatTensor([spec_min])[None, None, :out_dims])
        self.register_buffer('spec_max', torch.FloatTensor([spec_max])[None, None, :out_dims])

    def q_mean_variance(self, x_start, t):
        mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
        variance = extract(1. - self.alphas_cumprod, t, x_start.shape)
        log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape)
        return mean, variance, log_variance

    def predict_start_from_noise(self, x_t, t, noise):
        return (
                extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
                extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
        )

    def q_posterior(self, x_start, x_t, t):
        posterior_mean = (
                extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
                extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
        )
        posterior_variance = extract(self.posterior_variance, t, x_t.shape)
        posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
        return posterior_mean, posterior_variance, posterior_log_variance_clipped

    def p_mean_variance(self, x, t, cond):
        noise_pred = self.denoise_fn(x, t, cond=cond)
        x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred)

        x_recon.clamp_(-1., 1.)

        model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
        return model_mean, posterior_variance, posterior_log_variance

    @torch.no_grad()
    def p_sample_ddim(self, x, t, interval, cond):
        """
        Use the DDIM method from
        """
        a_t = extract(self.alphas_cumprod, t, x.shape)
        a_prev = extract(self.alphas_cumprod, torch.max(t - interval, torch.zeros_like(t)), x.shape)

        noise_pred = self.denoise_fn(x, t, cond=cond)
        x_prev = a_prev.sqrt() * (x / a_t.sqrt() + (((1 - a_prev) / a_prev).sqrt()-((1 - a_t) / a_t).sqrt()) * noise_pred)
        return x_prev

    @torch.no_grad()
    def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False):
        b, *_, device = *x.shape, x.device
        model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond)
        noise = noise_like(x.shape, device, repeat_noise)
        # no noise when t == 0
        nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
        return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise

    @torch.no_grad()
    def p_sample_plms(self, x, t, interval, cond, clip_denoised=True, repeat_noise=False):
        """
        Use the PLMS method from
        [Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778).
        """

        def get_x_pred(x, noise_t, t):
            a_t = extract(self.alphas_cumprod, t, x.shape)
            a_prev = extract(self.alphas_cumprod, torch.max(t - interval, torch.zeros_like(t)), x.shape)
            a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()

            x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x - 1 / (
                    a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
            x_pred = x + x_delta

            return x_pred

        noise_list = self.noise_list
        noise_pred = self.denoise_fn(x, t, cond=cond)

        if len(noise_list) == 0:
            x_pred = get_x_pred(x, noise_pred, t)
            noise_pred_prev = self.denoise_fn(x_pred, max(t - interval, 0), cond=cond)
            noise_pred_prime = (noise_pred + noise_pred_prev) / 2
        elif len(noise_list) == 1:
            noise_pred_prime = (3 * noise_pred - noise_list[-1]) / 2
        elif len(noise_list) == 2:
            noise_pred_prime = (23 * noise_pred - 16 * noise_list[-1] + 5 * noise_list[-2]) / 12
        else:
            noise_pred_prime = (55 * noise_pred - 59 * noise_list[-1] + 37 * noise_list[-2] - 9 * noise_list[-3]) / 24

        x_prev = get_x_pred(x, noise_pred_prime, t)
        noise_list.append(noise_pred)

        return x_prev

    def q_sample(self, x_start, t, noise=None):
        noise = default(noise, lambda: torch.randn_like(x_start))
        return (
                extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
                extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
        )

    def p_losses(self, x_start, t, cond, noise=None, loss_type='l2'):
        noise = default(noise, lambda: torch.randn_like(x_start))

        x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
        x_recon = self.denoise_fn(x_noisy, t, cond)

        if loss_type == 'l1':
            loss = (noise - x_recon).abs().mean()
        elif loss_type == 'l2':
            loss = F.mse_loss(noise, x_recon)
        else:
            raise NotImplementedError()

        return loss

    def forward(self, 
                condition, 
                gt_spec=None, 
                infer=True, 
                infer_speedup=10, 
                method='dpm-solver',
                k_step=300,
                use_tqdm=True):
        """
            conditioning diffusion, use fastspeech2 encoder output as the condition
        """
        cond = condition.transpose(1, 2)
        b, device = condition.shape[0], condition.device

        if not infer:
            spec = self.norm_spec(gt_spec)
            t = torch.randint(0, self.k_step, (b,), device=device).long()
            norm_spec = spec.transpose(1, 2)[:, None, :, :]  # [B, 1, M, T]
            return self.p_losses(norm_spec, t, cond=cond)
        else:
            shape = (cond.shape[0], 1, self.out_dims, cond.shape[2])
            
            if gt_spec is None:
                t = self.k_step
                x = torch.randn(shape, device=device)
            else:
                t = k_step
                norm_spec = self.norm_spec(gt_spec)
                norm_spec = norm_spec.transpose(1, 2)[:, None, :, :]
                x = self.q_sample(x_start=norm_spec, t=torch.tensor([t - 1], device=device).long())
                        
            if method is not None and infer_speedup > 1:
                if method == 'dpm-solver' or method == 'dpm-solver++':
                    from .dpm_solver_pytorch import (
                        DPM_Solver,
                        NoiseScheduleVP,
                        model_wrapper,
                    )
                    # 1. Define the noise schedule.
                    noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas[:t])

                    # 2. Convert your discrete-time `model` to the continuous-time
                    # noise prediction model. Here is an example for a diffusion model
                    # `model` with the noise prediction type ("noise") .
                    def my_wrapper(fn):
                        def wrapped(x, t, **kwargs):
                            ret = fn(x, t, **kwargs)
                            if use_tqdm:
                                self.bar.update(1)
                            return ret

                        return wrapped

                    model_fn = model_wrapper(
                        my_wrapper(self.denoise_fn),
                        noise_schedule,
                        model_type="noise",  # or "x_start" or "v" or "score"
                        model_kwargs={"cond": cond}
                    )

                    # 3. Define dpm-solver and sample by singlestep DPM-Solver.
                    # (We recommend singlestep DPM-Solver for unconditional sampling)
                    # You can adjust the `steps` to balance the computation
                    # costs and the sample quality.
                    if method == 'dpm-solver':
                        dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver")
                    elif method == 'dpm-solver++':
                        dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++")
                        
                    steps = t // infer_speedup
                    if use_tqdm:
                        self.bar = tqdm(desc="sample time step", total=steps)
                    x = dpm_solver.sample(
                        x,
                        steps=steps,
                        order=2,
                        skip_type="time_uniform",
                        method="multistep",
                    )
                    if use_tqdm:
                        self.bar.close()
                elif method == 'pndm':
                    self.noise_list = deque(maxlen=4)
                    if use_tqdm:
                        for i in tqdm(
                                reversed(range(0, t, infer_speedup)), desc='sample time step',
                                total=t // infer_speedup,
                        ):
                            x = self.p_sample_plms(
                                x, torch.full((b,), i, device=device, dtype=torch.long),
                                infer_speedup, cond=cond
                            )
                    else:
                        for i in reversed(range(0, t, infer_speedup)):
                            x = self.p_sample_plms(
                                x, torch.full((b,), i, device=device, dtype=torch.long),
                                infer_speedup, cond=cond
                            )
                elif method == 'ddim':
                    if use_tqdm:
                        for i in tqdm(
                                reversed(range(0, t, infer_speedup)), desc='sample time step',
                                total=t // infer_speedup,
                        ):
                            x = self.p_sample_ddim(
                                x, torch.full((b,), i, device=device, dtype=torch.long),
                                infer_speedup, cond=cond
                            )
                    else:
                        for i in reversed(range(0, t, infer_speedup)):
                            x = self.p_sample_ddim(
                                x, torch.full((b,), i, device=device, dtype=torch.long),
                                infer_speedup, cond=cond
                            )
                elif method == 'unipc':
                    from .uni_pc import NoiseScheduleVP, UniPC, model_wrapper
                    # 1. Define the noise schedule.
                    noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas[:t])

                    # 2. Convert your discrete-time `model` to the continuous-time
                    # noise prediction model. Here is an example for a diffusion model
                    # `model` with the noise prediction type ("noise") .
                    def my_wrapper(fn):
                        def wrapped(x, t, **kwargs):
                            ret = fn(x, t, **kwargs)
                            if use_tqdm:
                                self.bar.update(1)
                            return ret

                        return wrapped

                    model_fn = model_wrapper(
                        my_wrapper(self.denoise_fn),
                        noise_schedule,
                        model_type="noise",  # or "x_start" or "v" or "score"
                        model_kwargs={"cond": cond}
                    )

                    # 3. Define uni_pc and sample by multistep UniPC.
                    # You can adjust the `steps` to balance the computation
                    # costs and the sample quality.
                    uni_pc = UniPC(model_fn, noise_schedule, variant='bh2')

                    steps = t // infer_speedup
                    if use_tqdm:
                        self.bar = tqdm(desc="sample time step", total=steps)
                    x = uni_pc.sample(
                        x,
                        steps=steps,
                        order=2,
                        skip_type="time_uniform",
                        method="multistep",
                    )
                    if use_tqdm:
                        self.bar.close()
                else:
                    raise NotImplementedError(method)
            else:
                if use_tqdm:
                    for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t):
                        x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
                else:
                    for i in reversed(range(0, t)):
                        x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
            x = x.squeeze(1).transpose(1, 2)  # [B, T, M]
            return self.denorm_spec(x)

    def norm_spec(self, x):
        return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1

    def denorm_spec(self, x):
        return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min