Spaces:
Running
Running
File size: 13,862 Bytes
1f4e6d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
import math
from functools import partial
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
from local_attention import LocalAttention
from torch import nn
#import fast_transformers.causal_product.causal_product_cuda
def softmax_kernel(data, *, projection_matrix, is_query, normalize_data=True, eps=1e-4, device = None):
b, h, *_ = data.shape
# (batch size, head, length, model_dim)
# normalize model dim
data_normalizer = (data.shape[-1] ** -0.25) if normalize_data else 1.
# what is ration?, projection_matrix.shape[0] --> 266
ratio = (projection_matrix.shape[0] ** -0.5)
projection = repeat(projection_matrix, 'j d -> b h j d', b = b, h = h)
projection = projection.type_as(data)
#data_dash = w^T x
data_dash = torch.einsum('...id,...jd->...ij', (data_normalizer * data), projection)
# diag_data = D**2
diag_data = data ** 2
diag_data = torch.sum(diag_data, dim=-1)
diag_data = (diag_data / 2.0) * (data_normalizer ** 2)
diag_data = diag_data.unsqueeze(dim=-1)
#print ()
if is_query:
data_dash = ratio * (
torch.exp(data_dash - diag_data -
torch.max(data_dash, dim=-1, keepdim=True).values) + eps)
else:
data_dash = ratio * (
torch.exp(data_dash - diag_data + eps))#- torch.max(data_dash)) + eps)
return data_dash.type_as(data)
def orthogonal_matrix_chunk(cols, qr_uniform_q = False, device = None):
unstructured_block = torch.randn((cols, cols), device = device)
q, r = torch.linalg.qr(unstructured_block.cpu(), mode='reduced')
q, r = map(lambda t: t.to(device), (q, r))
# proposed by @Parskatt
# to make sure Q is uniform https://arxiv.org/pdf/math-ph/0609050.pdf
if qr_uniform_q:
d = torch.diag(r, 0)
q *= d.sign()
return q.t()
def exists(val):
return val is not None
def empty(tensor):
return tensor.numel() == 0
def default(val, d):
return val if exists(val) else d
def cast_tuple(val):
return (val,) if not isinstance(val, tuple) else val
class PCmer(nn.Module):
"""The encoder that is used in the Transformer model."""
def __init__(self,
num_layers,
num_heads,
dim_model,
dim_keys,
dim_values,
residual_dropout,
attention_dropout):
super().__init__()
self.num_layers = num_layers
self.num_heads = num_heads
self.dim_model = dim_model
self.dim_values = dim_values
self.dim_keys = dim_keys
self.residual_dropout = residual_dropout
self.attention_dropout = attention_dropout
self._layers = nn.ModuleList([_EncoderLayer(self) for _ in range(num_layers)])
# METHODS ########################################################################################################
def forward(self, phone, mask=None):
# apply all layers to the input
for (i, layer) in enumerate(self._layers):
phone = layer(phone, mask)
# provide the final sequence
return phone
# ==================================================================================================================== #
# CLASS _ E N C O D E R L A Y E R #
# ==================================================================================================================== #
class _EncoderLayer(nn.Module):
"""One layer of the encoder.
Attributes:
attn: (:class:`mha.MultiHeadAttention`): The attention mechanism that is used to read the input sequence.
feed_forward (:class:`ffl.FeedForwardLayer`): The feed-forward layer on top of the attention mechanism.
"""
def __init__(self, parent: PCmer):
"""Creates a new instance of ``_EncoderLayer``.
Args:
parent (Encoder): The encoder that the layers is created for.
"""
super().__init__()
self.conformer = ConformerConvModule(parent.dim_model)
self.norm = nn.LayerNorm(parent.dim_model)
self.dropout = nn.Dropout(parent.residual_dropout)
# selfatt -> fastatt: performer!
self.attn = SelfAttention(dim = parent.dim_model,
heads = parent.num_heads,
causal = False)
# METHODS ########################################################################################################
def forward(self, phone, mask=None):
# compute attention sub-layer
phone = phone + (self.attn(self.norm(phone), mask=mask))
phone = phone + (self.conformer(phone))
return phone
def calc_same_padding(kernel_size):
pad = kernel_size // 2
return (pad, pad - (kernel_size + 1) % 2)
# helper classes
class Swish(nn.Module):
def forward(self, x):
return x * x.sigmoid()
class Transpose(nn.Module):
def __init__(self, dims):
super().__init__()
assert len(dims) == 2, 'dims must be a tuple of two dimensions'
self.dims = dims
def forward(self, x):
return x.transpose(*self.dims)
class GLU(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
def forward(self, x):
out, gate = x.chunk(2, dim=self.dim)
return out * gate.sigmoid()
class DepthWiseConv1d(nn.Module):
def __init__(self, chan_in, chan_out, kernel_size, padding):
super().__init__()
self.padding = padding
self.conv = nn.Conv1d(chan_in, chan_out, kernel_size, groups = chan_in)
def forward(self, x):
x = F.pad(x, self.padding)
return self.conv(x)
class ConformerConvModule(nn.Module):
def __init__(
self,
dim,
causal = False,
expansion_factor = 2,
kernel_size = 31,
dropout = 0.):
super().__init__()
inner_dim = dim * expansion_factor
padding = calc_same_padding(kernel_size) if not causal else (kernel_size - 1, 0)
self.net = nn.Sequential(
nn.LayerNorm(dim),
Transpose((1, 2)),
nn.Conv1d(dim, inner_dim * 2, 1),
GLU(dim=1),
DepthWiseConv1d(inner_dim, inner_dim, kernel_size = kernel_size, padding = padding),
#nn.BatchNorm1d(inner_dim) if not causal else nn.Identity(),
Swish(),
nn.Conv1d(inner_dim, dim, 1),
Transpose((1, 2)),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
def linear_attention(q, k, v):
if v is None:
#print (k.size(), q.size())
out = torch.einsum('...ed,...nd->...ne', k, q)
return out
else:
k_cumsum = k.sum(dim = -2)
#k_cumsum = k.sum(dim = -2)
D_inv = 1. / (torch.einsum('...nd,...d->...n', q, k_cumsum.type_as(q)) + 1e-8)
context = torch.einsum('...nd,...ne->...de', k, v)
#print ("TRUEEE: ", context.size(), q.size(), D_inv.size())
out = torch.einsum('...de,...nd,...n->...ne', context, q, D_inv)
return out
def gaussian_orthogonal_random_matrix(nb_rows, nb_columns, scaling = 0, qr_uniform_q = False, device = None):
nb_full_blocks = int(nb_rows / nb_columns)
#print (nb_full_blocks)
block_list = []
for _ in range(nb_full_blocks):
q = orthogonal_matrix_chunk(nb_columns, qr_uniform_q = qr_uniform_q, device = device)
block_list.append(q)
# block_list[n] is a orthogonal matrix ... (model_dim * model_dim)
#print (block_list[0].size(), torch.einsum('...nd,...nd->...n', block_list[0], torch.roll(block_list[0],1,1)))
#print (nb_rows, nb_full_blocks, nb_columns)
remaining_rows = nb_rows - nb_full_blocks * nb_columns
#print (remaining_rows)
if remaining_rows > 0:
q = orthogonal_matrix_chunk(nb_columns, qr_uniform_q = qr_uniform_q, device = device)
#print (q[:remaining_rows].size())
block_list.append(q[:remaining_rows])
final_matrix = torch.cat(block_list)
if scaling == 0:
multiplier = torch.randn((nb_rows, nb_columns), device = device).norm(dim = 1)
elif scaling == 1:
multiplier = math.sqrt((float(nb_columns))) * torch.ones((nb_rows,), device = device)
else:
raise ValueError(f'Invalid scaling {scaling}')
return torch.diag(multiplier) @ final_matrix
class FastAttention(nn.Module):
def __init__(self, dim_heads, nb_features = None, ortho_scaling = 0, causal = False, generalized_attention = False, kernel_fn = nn.ReLU(), qr_uniform_q = False, no_projection = False):
super().__init__()
nb_features = default(nb_features, int(dim_heads * math.log(dim_heads)))
self.dim_heads = dim_heads
self.nb_features = nb_features
self.ortho_scaling = ortho_scaling
self.create_projection = partial(gaussian_orthogonal_random_matrix, nb_rows = self.nb_features, nb_columns = dim_heads, scaling = ortho_scaling, qr_uniform_q = qr_uniform_q)
projection_matrix = self.create_projection()
self.register_buffer('projection_matrix', projection_matrix)
self.generalized_attention = generalized_attention
self.kernel_fn = kernel_fn
# if this is turned on, no projection will be used
# queries and keys will be softmax-ed as in the original efficient attention paper
self.no_projection = no_projection
self.causal = causal
@torch.no_grad()
def redraw_projection_matrix(self):
projections = self.create_projection()
self.projection_matrix.copy_(projections)
del projections
def forward(self, q, k, v):
device = q.device
if self.no_projection:
q = q.softmax(dim = -1)
k = torch.exp(k) if self.causal else k.softmax(dim = -2)
else:
create_kernel = partial(softmax_kernel, projection_matrix = self.projection_matrix, device = device)
q = create_kernel(q, is_query = True)
k = create_kernel(k, is_query = False)
attn_fn = linear_attention if not self.causal else self.causal_linear_fn
if v is None:
out = attn_fn(q, k, None)
return out
else:
out = attn_fn(q, k, v)
return out
class SelfAttention(nn.Module):
def __init__(self, dim, causal = False, heads = 8, dim_head = 64, local_heads = 0, local_window_size = 256, nb_features = None, feature_redraw_interval = 1000, generalized_attention = False, kernel_fn = nn.ReLU(), qr_uniform_q = False, dropout = 0., no_projection = False):
super().__init__()
assert dim % heads == 0, 'dimension must be divisible by number of heads'
dim_head = default(dim_head, dim // heads)
inner_dim = dim_head * heads
self.fast_attention = FastAttention(dim_head, nb_features, causal = causal, generalized_attention = generalized_attention, kernel_fn = kernel_fn, qr_uniform_q = qr_uniform_q, no_projection = no_projection)
self.heads = heads
self.global_heads = heads - local_heads
self.local_attn = LocalAttention(window_size = local_window_size, causal = causal, autopad = True, dropout = dropout, look_forward = int(not causal), rel_pos_emb_config = (dim_head, local_heads)) if local_heads > 0 else None
#print (heads, nb_features, dim_head)
#name_embedding = torch.zeros(110, heads, dim_head, dim_head)
#self.name_embedding = nn.Parameter(name_embedding, requires_grad=True)
self.to_q = nn.Linear(dim, inner_dim)
self.to_k = nn.Linear(dim, inner_dim)
self.to_v = nn.Linear(dim, inner_dim)
self.to_out = nn.Linear(inner_dim, dim)
self.dropout = nn.Dropout(dropout)
@torch.no_grad()
def redraw_projection_matrix(self):
self.fast_attention.redraw_projection_matrix()
#torch.nn.init.zeros_(self.name_embedding)
#print (torch.sum(self.name_embedding))
def forward(self, x, context = None, mask = None, context_mask = None, name=None, inference=False, **kwargs):
_, _, _, h, gh = *x.shape, self.heads, self.global_heads
cross_attend = exists(context)
context = default(context, x)
context_mask = default(context_mask, mask) if not cross_attend else context_mask
#print (torch.sum(self.name_embedding))
q, k, v = self.to_q(x), self.to_k(context), self.to_v(context)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
(q, lq), (k, lk), (v, lv) = map(lambda t: (t[:, :gh], t[:, gh:]), (q, k, v))
attn_outs = []
#print (name)
#print (self.name_embedding[name].size())
if not empty(q):
if exists(context_mask):
global_mask = context_mask[:, None, :, None]
v.masked_fill_(~global_mask, 0.)
if cross_attend:
pass
#print (torch.sum(self.name_embedding))
#out = self.fast_attention(q,self.name_embedding[name],None)
#print (torch.sum(self.name_embedding[...,-1:]))
else:
out = self.fast_attention(q, k, v)
attn_outs.append(out)
if not empty(lq):
assert not cross_attend, 'local attention is not compatible with cross attention'
out = self.local_attn(lq, lk, lv, input_mask = mask)
attn_outs.append(out)
out = torch.cat(attn_outs, dim = 1)
out = rearrange(out, 'b h n d -> b n (h d)')
out = self.to_out(out)
return self.dropout(out) |