File size: 13,862 Bytes
1f4e6d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import math
from functools import partial

import torch
import torch.nn.functional as F
from einops import rearrange, repeat
from local_attention import LocalAttention
from torch import nn

#import fast_transformers.causal_product.causal_product_cuda

def softmax_kernel(data, *, projection_matrix, is_query, normalize_data=True, eps=1e-4, device = None):
    b, h, *_ = data.shape
    # (batch size, head, length, model_dim)

    # normalize model dim
    data_normalizer = (data.shape[-1] ** -0.25) if normalize_data else 1.

    # what is ration?, projection_matrix.shape[0] --> 266
    
    ratio = (projection_matrix.shape[0] ** -0.5)

    projection = repeat(projection_matrix, 'j d -> b h j d', b = b, h = h)
    projection = projection.type_as(data)

    #data_dash = w^T x
    data_dash = torch.einsum('...id,...jd->...ij', (data_normalizer * data), projection)

    
    # diag_data = D**2 
    diag_data = data ** 2
    diag_data = torch.sum(diag_data, dim=-1)
    diag_data = (diag_data / 2.0) * (data_normalizer ** 2)
    diag_data = diag_data.unsqueeze(dim=-1)
    
    #print ()
    if is_query:
        data_dash = ratio * (
            torch.exp(data_dash - diag_data -
                    torch.max(data_dash, dim=-1, keepdim=True).values) + eps)
    else:
        data_dash = ratio * (
            torch.exp(data_dash - diag_data + eps))#- torch.max(data_dash)) + eps)

    return data_dash.type_as(data)

def orthogonal_matrix_chunk(cols, qr_uniform_q = False, device = None):
    unstructured_block = torch.randn((cols, cols), device = device)
    q, r = torch.linalg.qr(unstructured_block.cpu(), mode='reduced')
    q, r = map(lambda t: t.to(device), (q, r))

    # proposed by @Parskatt
    # to make sure Q is uniform https://arxiv.org/pdf/math-ph/0609050.pdf
    if qr_uniform_q:
        d = torch.diag(r, 0)
        q *= d.sign()
    return q.t()
def exists(val):
    return val is not None

def empty(tensor):
    return tensor.numel() == 0

def default(val, d):
    return val if exists(val) else d

def cast_tuple(val):
    return (val,) if not isinstance(val, tuple) else val

class PCmer(nn.Module):
    """The encoder that is used in the Transformer model."""
    
    def __init__(self, 
                num_layers,
                num_heads,
                dim_model,
                dim_keys,
                dim_values,
                residual_dropout,
                attention_dropout):
        super().__init__()
        self.num_layers = num_layers
        self.num_heads = num_heads
        self.dim_model = dim_model
        self.dim_values = dim_values
        self.dim_keys = dim_keys
        self.residual_dropout = residual_dropout
        self.attention_dropout = attention_dropout

        self._layers = nn.ModuleList([_EncoderLayer(self) for _ in range(num_layers)])
        
    #  METHODS  ########################################################################################################
    
    def forward(self, phone, mask=None):
        
        # apply all layers to the input
        for (i, layer) in enumerate(self._layers):
            phone = layer(phone, mask)
        # provide the final sequence
        return phone


# ==================================================================================================================== #
#  CLASS  _ E N C O D E R  L A Y E R                                                                                   #
# ==================================================================================================================== #


class _EncoderLayer(nn.Module):
    """One layer of the encoder.
    
    Attributes:
        attn: (:class:`mha.MultiHeadAttention`): The attention mechanism that is used to read the input sequence.
        feed_forward (:class:`ffl.FeedForwardLayer`): The feed-forward layer on top of the attention mechanism.
    """
    
    def __init__(self, parent: PCmer):
        """Creates a new instance of ``_EncoderLayer``.
        
        Args:
            parent (Encoder): The encoder that the layers is created for.
        """
        super().__init__()
        
        
        self.conformer = ConformerConvModule(parent.dim_model)
        self.norm = nn.LayerNorm(parent.dim_model)
        self.dropout = nn.Dropout(parent.residual_dropout)
        
        # selfatt -> fastatt: performer!
        self.attn = SelfAttention(dim = parent.dim_model,
                                  heads = parent.num_heads,
                                  causal = False)
        
    #  METHODS  ########################################################################################################

    def forward(self, phone, mask=None):
        
        # compute attention sub-layer
        phone = phone + (self.attn(self.norm(phone), mask=mask))
        
        phone = phone + (self.conformer(phone))
        
        return phone 

def calc_same_padding(kernel_size):
    pad = kernel_size // 2
    return (pad, pad - (kernel_size + 1) % 2)

# helper classes

class Swish(nn.Module):
    def forward(self, x):
        return x * x.sigmoid()

class Transpose(nn.Module):
    def __init__(self, dims):
        super().__init__()
        assert len(dims) == 2, 'dims must be a tuple of two dimensions'
        self.dims = dims

    def forward(self, x):
        return x.transpose(*self.dims)

class GLU(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.dim = dim

    def forward(self, x):
        out, gate = x.chunk(2, dim=self.dim)
        return out * gate.sigmoid()

class DepthWiseConv1d(nn.Module):
    def __init__(self, chan_in, chan_out, kernel_size, padding):
        super().__init__()
        self.padding = padding
        self.conv = nn.Conv1d(chan_in, chan_out, kernel_size, groups = chan_in)

    def forward(self, x):
        x = F.pad(x, self.padding)
        return self.conv(x)

class ConformerConvModule(nn.Module):
    def __init__(
        self,
        dim,
        causal = False,
        expansion_factor = 2,
        kernel_size = 31,
        dropout = 0.):
        super().__init__()

        inner_dim = dim * expansion_factor
        padding = calc_same_padding(kernel_size) if not causal else (kernel_size - 1, 0)

        self.net = nn.Sequential(
            nn.LayerNorm(dim),
            Transpose((1, 2)),
            nn.Conv1d(dim, inner_dim * 2, 1),
            GLU(dim=1),
            DepthWiseConv1d(inner_dim, inner_dim, kernel_size = kernel_size, padding = padding),
            #nn.BatchNorm1d(inner_dim) if not causal else nn.Identity(),
            Swish(),
            nn.Conv1d(inner_dim, dim, 1),
            Transpose((1, 2)),
            nn.Dropout(dropout)
        )

    def forward(self, x):
        return self.net(x)

def linear_attention(q, k, v):
    if v is None:
        #print (k.size(), q.size())
        out = torch.einsum('...ed,...nd->...ne', k, q)
        return out

    else:
        k_cumsum = k.sum(dim = -2) 
        #k_cumsum = k.sum(dim = -2)
        D_inv = 1. / (torch.einsum('...nd,...d->...n', q, k_cumsum.type_as(q)) + 1e-8)

        context = torch.einsum('...nd,...ne->...de', k, v)
        #print ("TRUEEE: ", context.size(), q.size(), D_inv.size())
        out = torch.einsum('...de,...nd,...n->...ne', context, q, D_inv)
        return out

def gaussian_orthogonal_random_matrix(nb_rows, nb_columns, scaling = 0, qr_uniform_q = False, device = None):
    nb_full_blocks = int(nb_rows / nb_columns)
    #print (nb_full_blocks)
    block_list = []

    for _ in range(nb_full_blocks):
        q = orthogonal_matrix_chunk(nb_columns, qr_uniform_q = qr_uniform_q, device = device)
        block_list.append(q)
    # block_list[n] is a orthogonal matrix ... (model_dim * model_dim)
    #print (block_list[0].size(), torch.einsum('...nd,...nd->...n', block_list[0], torch.roll(block_list[0],1,1)))
    #print (nb_rows, nb_full_blocks, nb_columns)
    remaining_rows = nb_rows - nb_full_blocks * nb_columns
    #print (remaining_rows)
    if remaining_rows > 0:
        q = orthogonal_matrix_chunk(nb_columns, qr_uniform_q = qr_uniform_q, device = device)
        #print (q[:remaining_rows].size())
        block_list.append(q[:remaining_rows])

    final_matrix = torch.cat(block_list)
    
    if scaling == 0:
        multiplier = torch.randn((nb_rows, nb_columns), device = device).norm(dim = 1)
    elif scaling == 1:
        multiplier = math.sqrt((float(nb_columns))) * torch.ones((nb_rows,), device = device)
    else:
        raise ValueError(f'Invalid scaling {scaling}')

    return torch.diag(multiplier) @ final_matrix

class FastAttention(nn.Module):
    def __init__(self, dim_heads, nb_features = None, ortho_scaling = 0, causal = False, generalized_attention = False, kernel_fn = nn.ReLU(), qr_uniform_q = False, no_projection = False):
        super().__init__()
        nb_features = default(nb_features, int(dim_heads * math.log(dim_heads)))

        self.dim_heads = dim_heads
        self.nb_features = nb_features
        self.ortho_scaling = ortho_scaling

        self.create_projection = partial(gaussian_orthogonal_random_matrix, nb_rows = self.nb_features, nb_columns = dim_heads, scaling = ortho_scaling, qr_uniform_q = qr_uniform_q)
        projection_matrix = self.create_projection()
        self.register_buffer('projection_matrix', projection_matrix)

        self.generalized_attention = generalized_attention
        self.kernel_fn = kernel_fn

        # if this is turned on, no projection will be used
        # queries and keys will be softmax-ed as in the original efficient attention paper
        self.no_projection = no_projection

        self.causal = causal

    @torch.no_grad()
    def redraw_projection_matrix(self):
        projections = self.create_projection()
        self.projection_matrix.copy_(projections)
        del projections

    def forward(self, q, k, v):
        device = q.device

        if self.no_projection:
            q = q.softmax(dim = -1)
            k = torch.exp(k) if self.causal else k.softmax(dim = -2)
        else:
            create_kernel = partial(softmax_kernel, projection_matrix = self.projection_matrix, device = device)
            
            q = create_kernel(q, is_query = True)
            k = create_kernel(k, is_query = False)

        attn_fn = linear_attention if not self.causal else self.causal_linear_fn
        if v is None:
            out = attn_fn(q, k, None)
            return out
        else:
            out = attn_fn(q, k, v)
            return out
class SelfAttention(nn.Module):
    def __init__(self, dim, causal = False, heads = 8, dim_head = 64, local_heads = 0, local_window_size = 256, nb_features = None, feature_redraw_interval = 1000, generalized_attention = False, kernel_fn = nn.ReLU(), qr_uniform_q = False, dropout = 0., no_projection = False):
        super().__init__()
        assert dim % heads == 0, 'dimension must be divisible by number of heads'
        dim_head = default(dim_head, dim // heads)
        inner_dim = dim_head * heads
        self.fast_attention = FastAttention(dim_head, nb_features, causal = causal, generalized_attention = generalized_attention, kernel_fn = kernel_fn, qr_uniform_q = qr_uniform_q, no_projection = no_projection)

        self.heads = heads
        self.global_heads = heads - local_heads
        self.local_attn = LocalAttention(window_size = local_window_size, causal = causal, autopad = True, dropout = dropout, look_forward = int(not causal), rel_pos_emb_config = (dim_head, local_heads)) if local_heads > 0 else None

        #print (heads, nb_features, dim_head)
        #name_embedding = torch.zeros(110, heads, dim_head, dim_head)
        #self.name_embedding = nn.Parameter(name_embedding, requires_grad=True)
        

        self.to_q = nn.Linear(dim, inner_dim)
        self.to_k = nn.Linear(dim, inner_dim)
        self.to_v = nn.Linear(dim, inner_dim)
        self.to_out = nn.Linear(inner_dim, dim)
        self.dropout = nn.Dropout(dropout)

    @torch.no_grad()
    def redraw_projection_matrix(self):
        self.fast_attention.redraw_projection_matrix()
        #torch.nn.init.zeros_(self.name_embedding)
        #print (torch.sum(self.name_embedding))
    def forward(self, x, context = None, mask = None, context_mask = None, name=None, inference=False, **kwargs):
        _, _, _, h, gh = *x.shape, self.heads, self.global_heads
        
        cross_attend = exists(context)

        context = default(context, x)
        context_mask = default(context_mask, mask) if not cross_attend else context_mask
        #print (torch.sum(self.name_embedding))
        q, k, v = self.to_q(x), self.to_k(context), self.to_v(context)

        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
        (q, lq), (k, lk), (v, lv) = map(lambda t: (t[:, :gh], t[:, gh:]), (q, k, v))

        attn_outs = []
        #print (name)
        #print (self.name_embedding[name].size())
        if not empty(q):
            if exists(context_mask):
                global_mask = context_mask[:, None, :, None]
                v.masked_fill_(~global_mask, 0.)
            if cross_attend:
                pass
                #print (torch.sum(self.name_embedding))
                #out = self.fast_attention(q,self.name_embedding[name],None)
                #print (torch.sum(self.name_embedding[...,-1:]))
            else:
                out = self.fast_attention(q, k, v)
            attn_outs.append(out)

        if not empty(lq):
            assert not cross_attend, 'local attention is not compatible with cross attention'
            out = self.local_attn(lq, lk, lv, input_mask = mask)
            attn_outs.append(out)

        out = torch.cat(attn_outs, dim = 1)
        out = rearrange(out, 'b h n d -> b n (h d)')
        out =  self.to_out(out)
        return self.dropout(out)