File size: 21,795 Bytes
1f4e6d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
import json
import os

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import AvgPool1d, Conv1d, Conv2d, ConvTranspose1d
from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm

from .env import AttrDict
from .utils import get_padding, init_weights

LRELU_SLOPE = 0.1


def load_model(model_path, device='cuda'):
    config_file = os.path.join(os.path.split(model_path)[0], 'config.json')
    with open(config_file) as f:
        data = f.read()

    global h
    json_config = json.loads(data)
    h = AttrDict(json_config)

    generator = Generator(h).to(device)

    cp_dict = torch.load(model_path)
    generator.load_state_dict(cp_dict['generator'])
    generator.eval()
    generator.remove_weight_norm()
    del cp_dict
    return generator, h


class ResBlock1(torch.nn.Module):
    def __init__(self, h, channels, kernel_size=3, dilation=(1, 3, 5)):
        super(ResBlock1, self).__init__()
        self.h = h
        self.convs1 = nn.ModuleList([
            weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
                               padding=get_padding(kernel_size, dilation[0]))),
            weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
                               padding=get_padding(kernel_size, dilation[1]))),
            weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
                               padding=get_padding(kernel_size, dilation[2])))
        ])
        self.convs1.apply(init_weights)

        self.convs2 = nn.ModuleList([
            weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
                               padding=get_padding(kernel_size, 1))),
            weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
                               padding=get_padding(kernel_size, 1))),
            weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
                               padding=get_padding(kernel_size, 1)))
        ])
        self.convs2.apply(init_weights)

    def forward(self, x):
        for c1, c2 in zip(self.convs1, self.convs2):
            xt = F.leaky_relu(x, LRELU_SLOPE)
            xt = c1(xt)
            xt = F.leaky_relu(xt, LRELU_SLOPE)
            xt = c2(xt)
            x = xt + x
        return x

    def remove_weight_norm(self):
        for l in self.convs1:
            remove_weight_norm(l)
        for l in self.convs2:
            remove_weight_norm(l)


class ResBlock2(torch.nn.Module):
    def __init__(self, h, channels, kernel_size=3, dilation=(1, 3)):
        super(ResBlock2, self).__init__()
        self.h = h
        self.convs = nn.ModuleList([
            weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
                               padding=get_padding(kernel_size, dilation[0]))),
            weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
                               padding=get_padding(kernel_size, dilation[1])))
        ])
        self.convs.apply(init_weights)

    def forward(self, x):
        for c in self.convs:
            xt = F.leaky_relu(x, LRELU_SLOPE)
            xt = c(xt)
            x = xt + x
        return x

    def remove_weight_norm(self):
        for l in self.convs:
            remove_weight_norm(l)


def padDiff(x):
    return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0)

class SineGen(torch.nn.Module):
    """ Definition of sine generator
    SineGen(samp_rate, harmonic_num = 0,
            sine_amp = 0.1, noise_std = 0.003,
            voiced_threshold = 0,
            flag_for_pulse=False)
    samp_rate: sampling rate in Hz
    harmonic_num: number of harmonic overtones (default 0)
    sine_amp: amplitude of sine-wavefrom (default 0.1)
    noise_std: std of Gaussian noise (default 0.003)
    voiced_thoreshold: F0 threshold for U/V classification (default 0)
    flag_for_pulse: this SinGen is used inside PulseGen (default False)
    Note: when flag_for_pulse is True, the first time step of a voiced
        segment is always sin(np.pi) or cos(0)
    """

    def __init__(self, samp_rate, harmonic_num=0,
                 sine_amp=0.1, noise_std=0.003,
                 voiced_threshold=0,
                 flag_for_pulse=False):
        super(SineGen, self).__init__()
        self.sine_amp = sine_amp
        self.noise_std = noise_std
        self.harmonic_num = harmonic_num
        self.dim = self.harmonic_num + 1
        self.sampling_rate = samp_rate
        self.voiced_threshold = voiced_threshold
        self.flag_for_pulse = flag_for_pulse
        self.onnx = False

    def _f02uv(self, f0):
        # generate uv signal
        uv = (f0 > self.voiced_threshold).type(torch.float32)
        return uv

    def _f02sine(self, f0_values):
        """ f0_values: (batchsize, length, dim)
            where dim indicates fundamental tone and overtones
        """
        # convert to F0 in rad. The interger part n can be ignored
        # because 2 * np.pi * n doesn't affect phase
        rad_values = (f0_values / self.sampling_rate) % 1

        # initial phase noise (no noise for fundamental component)
        rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \
                              device=f0_values.device)
        rand_ini[:, 0] = 0
        rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini

        # instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
        if not self.flag_for_pulse:
            # for normal case

            # To prevent torch.cumsum numerical overflow,
            # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
            # Buffer tmp_over_one_idx indicates the time step to add -1.
            # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
            tmp_over_one = torch.cumsum(rad_values, 1) % 1
            tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
            cumsum_shift = torch.zeros_like(rad_values)
            cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0

            sines = torch.sin(torch.cumsum(rad_values + cumsum_shift, dim=1)
                              * 2 * np.pi)
        else:
            # If necessary, make sure that the first time step of every
            # voiced segments is sin(pi) or cos(0)
            # This is used for pulse-train generation

            # identify the last time step in unvoiced segments
            uv = self._f02uv(f0_values)
            uv_1 = torch.roll(uv, shifts=-1, dims=1)
            uv_1[:, -1, :] = 1
            u_loc = (uv < 1) * (uv_1 > 0)

            # get the instantanouse phase
            tmp_cumsum = torch.cumsum(rad_values, dim=1)
            # different batch needs to be processed differently
            for idx in range(f0_values.shape[0]):
                temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
                temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
                # stores the accumulation of i.phase within
                # each voiced segments
                tmp_cumsum[idx, :, :] = 0
                tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum

            # rad_values - tmp_cumsum: remove the accumulation of i.phase
            # within the previous voiced segment.
            i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)

            # get the sines
            sines = torch.cos(i_phase * 2 * np.pi)
        return sines

    def forward(self, f0, upp=None):
        """ sine_tensor, uv = forward(f0)
        input F0: tensor(batchsize=1, length, dim=1)
                  f0 for unvoiced steps should be 0
        output sine_tensor: tensor(batchsize=1, length, dim)
        output uv: tensor(batchsize=1, length, 1)
        """
        if self.onnx:
            with torch.no_grad():
                f0 = f0[:, None].transpose(1, 2)
                f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim, device=f0.device)
                # fundamental component
                f0_buf[:, :, 0] = f0[:, :, 0]
                for idx in np.arange(self.harmonic_num):
                    f0_buf[:, :, idx + 1] = f0_buf[:, :, 0] * (
                        idx + 2
                    )  # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
                rad_values = (f0_buf / self.sampling_rate) % 1  ###%1意味着n_har的乘积无法后处理优化
                rand_ini = torch.rand(
                    f0_buf.shape[0], f0_buf.shape[2], device=f0_buf.device
                )
                rand_ini[:, 0] = 0
                rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
                tmp_over_one = torch.cumsum(rad_values, 1)  # % 1  #####%1意味着后面的cumsum无法再优化
                tmp_over_one *= upp
                tmp_over_one = F.interpolate(
                    tmp_over_one.transpose(2, 1),
                    scale_factor=upp,
                    mode="linear",
                    align_corners=True,
                ).transpose(2, 1)
                rad_values = F.interpolate(
                    rad_values.transpose(2, 1), scale_factor=upp, mode="nearest"
                ).transpose(
                    2, 1
                )  #######
                tmp_over_one %= 1
                tmp_over_one_idx = (tmp_over_one[:, 1:, :] - tmp_over_one[:, :-1, :]) < 0
                cumsum_shift = torch.zeros_like(rad_values)
                cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
                sine_waves = torch.sin(
                    torch.cumsum(rad_values + cumsum_shift, dim=1) * 2 * np.pi
                )
                sine_waves = sine_waves * self.sine_amp
                uv = self._f02uv(f0)
                uv = F.interpolate(
                    uv.transpose(2, 1), scale_factor=upp, mode="nearest"
                ).transpose(2, 1)
                noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
                noise = noise_amp * torch.randn_like(sine_waves)
                sine_waves = sine_waves * uv + noise
            return sine_waves, uv, noise
        else:
            with torch.no_grad():
                # fundamental component
                fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))

                # generate sine waveforms
                sine_waves = self._f02sine(fn) * self.sine_amp

                # generate uv signal
                # uv = torch.ones(f0.shape)
                # uv = uv * (f0 > self.voiced_threshold)
                uv = self._f02uv(f0)

                # noise: for unvoiced should be similar to sine_amp
                #        std = self.sine_amp/3 -> max value ~ self.sine_amp
                # .       for voiced regions is self.noise_std
                noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
                noise = noise_amp * torch.randn_like(sine_waves)

                # first: set the unvoiced part to 0 by uv
                # then: additive noise
                sine_waves = sine_waves * uv + noise
            return sine_waves, uv, noise


class SourceModuleHnNSF(torch.nn.Module):
    """ SourceModule for hn-nsf
    SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
                 add_noise_std=0.003, voiced_threshod=0)
    sampling_rate: sampling_rate in Hz
    harmonic_num: number of harmonic above F0 (default: 0)
    sine_amp: amplitude of sine source signal (default: 0.1)
    add_noise_std: std of additive Gaussian noise (default: 0.003)
        note that amplitude of noise in unvoiced is decided
        by sine_amp
    voiced_threshold: threhold to set U/V given F0 (default: 0)
    Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
    F0_sampled (batchsize, length, 1)
    Sine_source (batchsize, length, 1)
    noise_source (batchsize, length 1)
    uv (batchsize, length, 1)
    """

    def __init__(self, sampling_rate, harmonic_num=0, sine_amp=0.1,
                 add_noise_std=0.003, voiced_threshod=0):
        super(SourceModuleHnNSF, self).__init__()

        self.sine_amp = sine_amp
        self.noise_std = add_noise_std

        # to produce sine waveforms
        self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
                                 sine_amp, add_noise_std, voiced_threshod)

        # to merge source harmonics into a single excitation
        self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
        self.l_tanh = torch.nn.Tanh()

    def forward(self, x, upp=None):
        """
        Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
        F0_sampled (batchsize, length, 1)
        Sine_source (batchsize, length, 1)
        noise_source (batchsize, length 1)
        """
        # source for harmonic branch
        sine_wavs, uv, _ = self.l_sin_gen(x, upp)
        sine_merge = self.l_tanh(self.l_linear(sine_wavs.to(self.l_linear.weight.dtype)))

        # source for noise branch, in the same shape as uv
        noise = torch.randn_like(uv) * self.sine_amp / 3
        return sine_merge, noise, uv


class Generator(torch.nn.Module):
    def __init__(self, h):
        super(Generator, self).__init__()
        self.h = h

        self.num_kernels = len(h["resblock_kernel_sizes"])
        self.num_upsamples = len(h["upsample_rates"])
        self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(h["upsample_rates"]))
        self.m_source = SourceModuleHnNSF(
            sampling_rate=h["sampling_rate"],
            harmonic_num=8)
        self.noise_convs = nn.ModuleList()
        self.conv_pre = weight_norm(Conv1d(h["inter_channels"], h["upsample_initial_channel"], 7, 1, padding=3))
        resblock = ResBlock1 if h["resblock"] == '1' else ResBlock2
        self.ups = nn.ModuleList()
        for i, (u, k) in enumerate(zip(h["upsample_rates"], h["upsample_kernel_sizes"])):
            c_cur = h["upsample_initial_channel"] // (2 ** (i + 1))
            self.ups.append(weight_norm(
                ConvTranspose1d(h["upsample_initial_channel"] // (2 ** i), h["upsample_initial_channel"] // (2 ** (i + 1)),
                                k, u, padding=(k - u +1 ) // 2)))
            if i + 1 < len(h["upsample_rates"]):  #
                stride_f0 = np.prod(h["upsample_rates"][i + 1:])
                self.noise_convs.append(Conv1d(
                    1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2))
            else:
                self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
        self.resblocks = nn.ModuleList()
        for i in range(len(self.ups)):
            ch = h["upsample_initial_channel"] // (2 ** (i + 1))
            for j, (k, d) in enumerate(zip(h["resblock_kernel_sizes"], h["resblock_dilation_sizes"])):
                self.resblocks.append(resblock(h, ch, k, d))

        self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
        self.ups.apply(init_weights)
        self.conv_post.apply(init_weights)
        self.cond = nn.Conv1d(h['gin_channels'], h['upsample_initial_channel'], 1)
        self.upp = np.prod(h["upsample_rates"])
        self.onnx = False

    def OnnxExport(self):
        self.onnx = True
        self.m_source.l_sin_gen.onnx = True

    def forward(self, x, f0, g=None):
        # print(1,x.shape,f0.shape,f0[:, None].shape)
        if not self.onnx:
            f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2)  # bs,n,t
        # print(2,f0.shape)
        har_source, noi_source, uv = self.m_source(f0, self.upp)
        har_source = har_source.transpose(1, 2)
        x = self.conv_pre(x)
        x = x + self.cond(g)
        # print(124,x.shape,har_source.shape)
        for i in range(self.num_upsamples):
            x = F.leaky_relu(x, LRELU_SLOPE)
            # print(3,x.shape)
            x = self.ups[i](x)
            x_source = self.noise_convs[i](har_source)
            # print(4,x_source.shape,har_source.shape,x.shape)
            x = x + x_source
            xs = None
            for j in range(self.num_kernels):
                if xs is None:
                    xs = self.resblocks[i * self.num_kernels + j](x)
                else:
                    xs += self.resblocks[i * self.num_kernels + j](x)
            x = xs / self.num_kernels
        x = F.leaky_relu(x)
        x = self.conv_post(x)
        x = torch.tanh(x)

        return x

    def remove_weight_norm(self):
        print('Removing weight norm...')
        for l in self.ups:
            remove_weight_norm(l)
        for l in self.resblocks:
            l.remove_weight_norm()
        remove_weight_norm(self.conv_pre)
        remove_weight_norm(self.conv_post)


class DiscriminatorP(torch.nn.Module):
    def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
        super(DiscriminatorP, self).__init__()
        self.period = period
        norm_f = weight_norm if use_spectral_norm is False else spectral_norm
        self.convs = nn.ModuleList([
            norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
            norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
            norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
            norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
            norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
        ])
        self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))

    def forward(self, x):
        fmap = []

        # 1d to 2d
        b, c, t = x.shape
        if t % self.period != 0:  # pad first
            n_pad = self.period - (t % self.period)
            x = F.pad(x, (0, n_pad), "reflect")
            t = t + n_pad
        x = x.view(b, c, t // self.period, self.period)

        for l in self.convs:
            x = l(x)
            x = F.leaky_relu(x, LRELU_SLOPE)
            fmap.append(x)
        x = self.conv_post(x)
        fmap.append(x)
        x = torch.flatten(x, 1, -1)

        return x, fmap


class MultiPeriodDiscriminator(torch.nn.Module):
    def __init__(self, periods=None):
        super(MultiPeriodDiscriminator, self).__init__()
        self.periods = periods if periods is not None else [2, 3, 5, 7, 11]
        self.discriminators = nn.ModuleList()
        for period in self.periods:
            self.discriminators.append(DiscriminatorP(period))

    def forward(self, y, y_hat):
        y_d_rs = []
        y_d_gs = []
        fmap_rs = []
        fmap_gs = []
        for i, d in enumerate(self.discriminators):
            y_d_r, fmap_r = d(y)
            y_d_g, fmap_g = d(y_hat)
            y_d_rs.append(y_d_r)
            fmap_rs.append(fmap_r)
            y_d_gs.append(y_d_g)
            fmap_gs.append(fmap_g)

        return y_d_rs, y_d_gs, fmap_rs, fmap_gs


class DiscriminatorS(torch.nn.Module):
    def __init__(self, use_spectral_norm=False):
        super(DiscriminatorS, self).__init__()
        norm_f = weight_norm if use_spectral_norm is False else spectral_norm
        self.convs = nn.ModuleList([
            norm_f(Conv1d(1, 128, 15, 1, padding=7)),
            norm_f(Conv1d(128, 128, 41, 2, groups=4, padding=20)),
            norm_f(Conv1d(128, 256, 41, 2, groups=16, padding=20)),
            norm_f(Conv1d(256, 512, 41, 4, groups=16, padding=20)),
            norm_f(Conv1d(512, 1024, 41, 4, groups=16, padding=20)),
            norm_f(Conv1d(1024, 1024, 41, 1, groups=16, padding=20)),
            norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
        ])
        self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))

    def forward(self, x):
        fmap = []
        for l in self.convs:
            x = l(x)
            x = F.leaky_relu(x, LRELU_SLOPE)
            fmap.append(x)
        x = self.conv_post(x)
        fmap.append(x)
        x = torch.flatten(x, 1, -1)

        return x, fmap


class MultiScaleDiscriminator(torch.nn.Module):
    def __init__(self):
        super(MultiScaleDiscriminator, self).__init__()
        self.discriminators = nn.ModuleList([
            DiscriminatorS(use_spectral_norm=True),
            DiscriminatorS(),
            DiscriminatorS(),
        ])
        self.meanpools = nn.ModuleList([
            AvgPool1d(4, 2, padding=2),
            AvgPool1d(4, 2, padding=2)
        ])

    def forward(self, y, y_hat):
        y_d_rs = []
        y_d_gs = []
        fmap_rs = []
        fmap_gs = []
        for i, d in enumerate(self.discriminators):
            if i != 0:
                y = self.meanpools[i - 1](y)
                y_hat = self.meanpools[i - 1](y_hat)
            y_d_r, fmap_r = d(y)
            y_d_g, fmap_g = d(y_hat)
            y_d_rs.append(y_d_r)
            fmap_rs.append(fmap_r)
            y_d_gs.append(y_d_g)
            fmap_gs.append(fmap_g)

        return y_d_rs, y_d_gs, fmap_rs, fmap_gs


def feature_loss(fmap_r, fmap_g):
    loss = 0
    for dr, dg in zip(fmap_r, fmap_g):
        for rl, gl in zip(dr, dg):
            loss += torch.mean(torch.abs(rl - gl))

    return loss * 2


def discriminator_loss(disc_real_outputs, disc_generated_outputs):
    loss = 0
    r_losses = []
    g_losses = []
    for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
        r_loss = torch.mean((1 - dr) ** 2)
        g_loss = torch.mean(dg ** 2)
        loss += (r_loss + g_loss)
        r_losses.append(r_loss.item())
        g_losses.append(g_loss.item())

    return loss, r_losses, g_losses


def generator_loss(disc_outputs):
    loss = 0
    gen_losses = []
    for dg in disc_outputs:
        l = torch.mean((1 - dg) ** 2)
        gen_losses.append(l)
        loss += l

    return loss, gen_losses