Spaces:
Running
Running
from time import time | |
import numpy as np | |
import pynvml | |
import torch | |
from torch.nn.functional import normalize | |
# device=torch.device("cuda:0") | |
def _kpp(data: torch.Tensor, k: int, sample_size: int = -1): | |
""" Picks k points in the data based on the kmeans++ method. | |
Parameters | |
---------- | |
data : torch.Tensor | |
Expect a rank 1 or 2 array. Rank 1 is assumed to describe 1-D | |
data, rank 2 multidimensional data, in which case one | |
row is one observation. | |
k : int | |
Number of samples to generate. | |
sample_size : int | |
sample data to avoid memory overflow during calculation | |
Returns | |
------- | |
init : ndarray | |
A 'k' by 'N' containing the initial centroids. | |
References | |
---------- | |
.. [1] D. Arthur and S. Vassilvitskii, "k-means++: the advantages of | |
careful seeding", Proceedings of the Eighteenth Annual ACM-SIAM Symposium | |
on Discrete Algorithms, 2007. | |
.. [2] scipy/cluster/vq.py: _kpp | |
""" | |
batch_size=data.shape[0] | |
if batch_size>sample_size: | |
data = data[torch.randint(0, batch_size,[sample_size], device=data.device)] | |
dims = data.shape[1] if len(data.shape) > 1 else 1 | |
init = torch.zeros((k, dims)).to(data.device) | |
r = torch.distributions.uniform.Uniform(0, 1) | |
for i in range(k): | |
if i == 0: | |
init[i, :] = data[torch.randint(data.shape[0], [1])] | |
else: | |
D2 = torch.cdist(init[:i, :][None, :], data[None, :], p=2)[0].amin(dim=0) | |
probs = D2 / torch.sum(D2) | |
cumprobs = torch.cumsum(probs, dim=0) | |
init[i, :] = data[torch.searchsorted(cumprobs, r.sample([1]).to(data.device))] | |
return init | |
class KMeansGPU: | |
''' | |
Kmeans clustering algorithm implemented with PyTorch | |
Parameters: | |
n_clusters: int, | |
Number of clusters | |
max_iter: int, default: 100 | |
Maximum number of iterations | |
tol: float, default: 0.0001 | |
Tolerance | |
verbose: int, default: 0 | |
Verbosity | |
mode: {'euclidean', 'cosine'}, default: 'euclidean' | |
Type of distance measure | |
init_method: {'random', 'point', '++'} | |
Type of initialization | |
minibatch: {None, int}, default: None | |
Batch size of MinibatchKmeans algorithm | |
if None perform full KMeans algorithm | |
Attributes: | |
centroids: torch.Tensor, shape: [n_clusters, n_features] | |
cluster centroids | |
''' | |
def __init__(self, n_clusters, max_iter=200, tol=1e-4, verbose=0, mode="euclidean",device=torch.device("cuda:0")): | |
self.n_clusters = n_clusters | |
self.max_iter = max_iter | |
self.tol = tol | |
self.verbose = verbose | |
self.mode = mode | |
self.device=device | |
pynvml.nvmlInit() | |
gpu_handle = pynvml.nvmlDeviceGetHandleByIndex(device.index) | |
info = pynvml.nvmlDeviceGetMemoryInfo(gpu_handle) | |
self.minibatch=int(33e6/self.n_clusters*info.free/ 1024 / 1024 / 1024) | |
print("free_mem/GB:",info.free/ 1024 / 1024 / 1024,"minibatch:",self.minibatch) | |
def cos_sim(a, b): | |
""" | |
Compute cosine similarity of 2 sets of vectors | |
Parameters: | |
a: torch.Tensor, shape: [m, n_features] | |
b: torch.Tensor, shape: [n, n_features] | |
""" | |
return normalize(a, dim=-1) @ normalize(b, dim=-1).transpose(-2, -1) | |
def euc_sim(a, b): | |
""" | |
Compute euclidean similarity of 2 sets of vectors | |
Parameters: | |
a: torch.Tensor, shape: [m, n_features] | |
b: torch.Tensor, shape: [n, n_features] | |
""" | |
return 2 * a @ b.transpose(-2, -1) -(a**2).sum(dim=1)[..., :, None] - (b**2).sum(dim=1)[..., None, :] | |
def max_sim(self, a, b): | |
""" | |
Compute maximum similarity (or minimum distance) of each vector | |
in a with all of the vectors in b | |
Parameters: | |
a: torch.Tensor, shape: [m, n_features] | |
b: torch.Tensor, shape: [n, n_features] | |
""" | |
if self.mode == 'cosine': | |
sim_func = self.cos_sim | |
elif self.mode == 'euclidean': | |
sim_func = self.euc_sim | |
sim = sim_func(a, b) | |
max_sim_v, max_sim_i = sim.max(dim=-1) | |
return max_sim_v, max_sim_i | |
def fit_predict(self, X): | |
""" | |
Combination of fit() and predict() methods. | |
This is faster than calling fit() and predict() seperately. | |
Parameters: | |
X: torch.Tensor, shape: [n_samples, n_features] | |
centroids: {torch.Tensor, None}, default: None | |
if given, centroids will be initialized with given tensor | |
if None, centroids will be randomly chosen from X | |
Return: | |
labels: torch.Tensor, shape: [n_samples] | |
mini_=33kk/k*remain | |
mini=min(mini_,fea_shape) | |
offset=log2(k/1000)*1.5 | |
kpp_all=min(mini_*10/offset,fea_shape) | |
kpp_sample=min(mini_/12/offset,fea_shape) | |
""" | |
assert isinstance(X, torch.Tensor), "input must be torch.Tensor" | |
assert X.dtype in [torch.half, torch.float, torch.double], "input must be floating point" | |
assert X.ndim == 2, "input must be a 2d tensor with shape: [n_samples, n_features] " | |
# print("verbose:%s"%self.verbose) | |
offset = np.power(1.5,np.log(self.n_clusters / 1000))/np.log(2) | |
with torch.no_grad(): | |
batch_size= X.shape[0] | |
# print(self.minibatch, int(self.minibatch * 10 / offset), batch_size) | |
start_time = time() | |
if (self.minibatch*10//offset< batch_size): | |
x = X[torch.randint(0, batch_size,[int(self.minibatch*10/offset)])].to(self.device) | |
else: | |
x = X.to(self.device) | |
# print(x.device) | |
self.centroids = _kpp(x, self.n_clusters, min(int(self.minibatch/12/offset),batch_size)) | |
del x | |
torch.cuda.empty_cache() | |
# self.centroids = self.centroids.to(self.device) | |
num_points_in_clusters = torch.ones(self.n_clusters, device=self.device, dtype=X.dtype)#全1 | |
closest = None#[3098036]#int64 | |
if(self.minibatch>=batch_size//2 and self.minibatch<batch_size): | |
X = X[torch.randint(0, batch_size,[self.minibatch])].to(self.device) | |
elif(self.minibatch>=batch_size): | |
X=X.to(self.device) | |
for i in range(self.max_iter): | |
iter_time = time() | |
if self.minibatch<batch_size//2:#可用minibatch数太小,每次都得从内存倒腾到显存 | |
x = X[torch.randint(0, batch_size, [self.minibatch])].to(self.device) | |
else:#否则直接全部缓存 | |
x = X | |
closest = self.max_sim(a=x, b=self.centroids)[1].to(torch.int16)#[3098036]#int64#0~999 | |
matched_clusters, counts = closest.unique(return_counts=True)#int64#1k | |
expanded_closest = closest[None].expand(self.n_clusters, -1)#[1000, 3098036]#int16#0~999 | |
mask = (expanded_closest==torch.arange(self.n_clusters, device=self.device)[:, None]).to(X.dtype)#==后者是int64*1000 | |
c_grad = mask @ x / mask.sum(-1)[..., :, None] | |
c_grad[c_grad!=c_grad] = 0 # remove NaNs | |
error = (c_grad - self.centroids).pow(2).sum() | |
if self.minibatch is not None: | |
lr = 1/num_points_in_clusters[:,None] * 0.9 + 0.1 | |
else: | |
lr = 1 | |
matched_clusters=matched_clusters.long() | |
num_points_in_clusters[matched_clusters] += counts#IndexError: tensors used as indices must be long, byte or bool tensors | |
self.centroids = self.centroids * (1-lr) + c_grad * lr | |
if self.verbose >= 2: | |
print('iter:', i, 'error:', error.item(), 'time spent:', round(time()-iter_time, 4)) | |
if error <= self.tol: | |
break | |
if self.verbose >= 1: | |
print(f'used {i+1} iterations ({round(time()-start_time, 4)}s) to cluster {batch_size} items into {self.n_clusters} clusters') | |
return closest | |