import argparse import logging import os import time from pathlib import Path import numpy as np import torch import tqdm from kmeans import KMeansGPU from sklearn.cluster import KMeans, MiniBatchKMeans logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def train_cluster(in_dir, n_clusters, use_minibatch=True, verbose=False,use_gpu=False):#gpu_minibatch真拉,虽然库支持但是也不考虑 if str(in_dir).endswith(".ipynb_checkpoints"): logger.info(f"Ignore {in_dir}") logger.info(f"Loading features from {in_dir}") features = [] nums = 0 for path in tqdm.tqdm(in_dir.glob("*.soft.pt")): # for name in os.listdir(in_dir): # path="%s/%s"%(in_dir,name) features.append(torch.load(path,map_location="cpu").squeeze(0).numpy().T) # print(features[-1].shape) features = np.concatenate(features, axis=0) print(nums, features.nbytes/ 1024**2, "MB , shape:",features.shape, features.dtype) features = features.astype(np.float32) logger.info(f"Clustering features of shape: {features.shape}") t = time.time() if(use_gpu is False): if use_minibatch: kmeans = MiniBatchKMeans(n_clusters=n_clusters,verbose=verbose, batch_size=4096, max_iter=80).fit(features) else: kmeans = KMeans(n_clusters=n_clusters,verbose=verbose).fit(features) else: kmeans = KMeansGPU(n_clusters=n_clusters, mode='euclidean', verbose=2 if verbose else 0,max_iter=500,tol=1e-2)# features=torch.from_numpy(features)#.to(device) kmeans.fit_predict(features)# print(time.time()-t, "s") x = { "n_features_in_": kmeans.n_features_in_ if use_gpu is False else features.shape[1], "_n_threads": kmeans._n_threads if use_gpu is False else 4, "cluster_centers_": kmeans.cluster_centers_ if use_gpu is False else kmeans.centroids.cpu().numpy(), } print("end") return x if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--dataset', type=Path, default="./dataset/44k", help='path of training data directory') parser.add_argument('--output', type=Path, default="logs/44k", help='path of model output directory') parser.add_argument('--gpu',action='store_true', default=False , help='to use GPU') args = parser.parse_args() checkpoint_dir = args.output dataset = args.dataset use_gpu = args.gpu n_clusters = 10000 ckpt = {} for spk in os.listdir(dataset): if os.path.isdir(dataset/spk): print(f"train kmeans for {spk}...") in_dir = dataset/spk x = train_cluster(in_dir, n_clusters,use_minibatch=False,verbose=False,use_gpu=use_gpu) ckpt[spk] = x checkpoint_path = checkpoint_dir / f"kmeans_{n_clusters}.pt" checkpoint_path.parent.mkdir(exist_ok=True, parents=True) torch.save( ckpt, checkpoint_path, )