Spaces:
Sleeping
Sleeping
File size: 11,271 Bytes
cb34746 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
#! /usr/bin/env python3
# This is a Python port of the Rust reference implementation of BLAKE3:
# https://github.com/BLAKE3-team/BLAKE3/blob/master/reference_impl/reference_impl.rs
from __future__ import annotations
from dataclasses import dataclass
OUT_LEN = 32
KEY_LEN = 32
BLOCK_LEN = 64
CHUNK_LEN = 1024
CHUNK_START = 1 << 0
CHUNK_END = 1 << 1
PARENT = 1 << 2
ROOT = 1 << 3
KEYED_HASH = 1 << 4
DERIVE_KEY_CONTEXT = 1 << 5
DERIVE_KEY_MATERIAL = 1 << 6
IV = [
0x6A09E667,
0xBB67AE85,
0x3C6EF372,
0xA54FF53A,
0x510E527F,
0x9B05688C,
0x1F83D9AB,
0x5BE0CD19,
]
MSG_PERMUTATION = [2, 6, 3, 10, 7, 0, 4, 13, 1, 11, 12, 5, 9, 14, 15, 8]
def mask32(x: int) -> int:
return x & 0xFFFFFFFF
def add32(x: int, y: int) -> int:
return mask32(x + y)
def rightrotate32(x: int, n: int) -> int:
return mask32(x << (32 - n)) | (x >> n)
# The mixing function, G, which mixes either a column or a diagonal.
def g(state: list[int], a: int, b: int, c: int, d: int, mx: int, my: int) -> None:
state[a] = add32(state[a], add32(state[b], mx))
state[d] = rightrotate32(state[d] ^ state[a], 16)
state[c] = add32(state[c], state[d])
state[b] = rightrotate32(state[b] ^ state[c], 12)
state[a] = add32(state[a], add32(state[b], my))
state[d] = rightrotate32(state[d] ^ state[a], 8)
state[c] = add32(state[c], state[d])
state[b] = rightrotate32(state[b] ^ state[c], 7)
def round(state: list[int], m: list[int]) -> None:
# Mix the columns.
g(state, 0, 4, 8, 12, m[0], m[1])
g(state, 1, 5, 9, 13, m[2], m[3])
g(state, 2, 6, 10, 14, m[4], m[5])
g(state, 3, 7, 11, 15, m[6], m[7])
# Mix the diagonals.
g(state, 0, 5, 10, 15, m[8], m[9])
g(state, 1, 6, 11, 12, m[10], m[11])
g(state, 2, 7, 8, 13, m[12], m[13])
g(state, 3, 4, 9, 14, m[14], m[15])
def permute(m: list[int]) -> None:
original = list(m)
for i in range(16):
m[i] = original[MSG_PERMUTATION[i]]
def compress(
chaining_value: list[int],
block_words: list[int],
counter: int,
block_len: int,
flags: int,
) -> list[int]:
state = [
chaining_value[0],
chaining_value[1],
chaining_value[2],
chaining_value[3],
chaining_value[4],
chaining_value[5],
chaining_value[6],
chaining_value[7],
IV[0],
IV[1],
IV[2],
IV[3],
mask32(counter),
mask32(counter >> 32),
block_len,
flags,
]
assert len(block_words) == 16
block = list(block_words)
round(state, block) # round 1
permute(block)
round(state, block) # round 2
permute(block)
round(state, block) # round 3
permute(block)
round(state, block) # round 4
permute(block)
round(state, block) # round 5
permute(block)
round(state, block) # round 6
permute(block)
round(state, block) # round 7
for i in range(8):
state[i] ^= state[i + 8]
state[i + 8] ^= chaining_value[i]
return state
def words_from_little_endian_bytes(b: bytes) -> list[int]:
assert len(b) % 4 == 0
return [int.from_bytes(b[i : i + 4], "little") for i in range(0, len(b), 4)]
# Each chunk or parent node can produce either an 8-word chaining value or, by
# setting the ROOT flag, any number of final output bytes. The Output struct
# captures the state just prior to choosing between those two possibilities.
@dataclass
class Output:
input_chaining_value: list[int]
block_words: list[int]
counter: int
block_len: int
flags: int
def chaining_value(self) -> list[int]:
return compress(
self.input_chaining_value,
self.block_words,
self.counter,
self.block_len,
self.flags,
)[:8]
def root_output_bytes(self, length: int) -> bytes:
output_bytes = bytearray()
i = 0
while i < length:
words = compress(
self.input_chaining_value,
self.block_words,
i // 64,
self.block_len,
self.flags | ROOT,
)
# The output length might not be a multiple of 4.
for word in words:
word_bytes = word.to_bytes(4, "little")
take = min(len(word_bytes), length - i)
output_bytes.extend(word_bytes[:take])
i += take
return output_bytes
@dataclass
class ChunkState:
chaining_value: list[int]
chunk_counter: int
block: bytearray
block_len: int
blocks_compressed: int
flags: int
def __init__(self, key_words: list[int], chunk_counter: int, flags: int) -> None:
self.chaining_value = key_words
self.chunk_counter = chunk_counter
self.block = bytearray(BLOCK_LEN)
self.block_len = 0
self.blocks_compressed = 0
self.flags = flags
def len(self) -> int:
return BLOCK_LEN * self.blocks_compressed + self.block_len
def start_flag(self) -> int:
if self.blocks_compressed == 0:
return CHUNK_START
else:
return 0
def update(self, input_bytes: bytes) -> None:
while input_bytes:
# If the block buffer is full, compress it and clear it. More
# input_bytes is coming, so this compression is not CHUNK_END.
if self.block_len == BLOCK_LEN:
block_words = words_from_little_endian_bytes(self.block)
self.chaining_value = compress(
self.chaining_value,
block_words,
self.chunk_counter,
BLOCK_LEN,
self.flags | self.start_flag(),
)[:8]
self.blocks_compressed += 1
self.block = bytearray(BLOCK_LEN)
self.block_len = 0
# Copy input bytes into the block buffer.
want = BLOCK_LEN - self.block_len
take = min(want, len(input_bytes))
self.block[self.block_len : self.block_len + take] = input_bytes[:take]
self.block_len += take
input_bytes = input_bytes[take:]
def output(self) -> Output:
block_words = words_from_little_endian_bytes(self.block)
return Output(
self.chaining_value,
block_words,
self.chunk_counter,
self.block_len,
self.flags | self.start_flag() | CHUNK_END,
)
def parent_output(
left_child_cv: list[int],
right_child_cv: list[int],
key_words: list[int],
flags: int,
) -> Output:
return Output(
key_words, left_child_cv + right_child_cv, 0, BLOCK_LEN, PARENT | flags
)
def parent_cv(
left_child_cv: list[int],
right_child_cv: list[int],
key_words: list[int],
flags: int,
) -> list[int]:
return parent_output(
left_child_cv, right_child_cv, key_words, flags
).chaining_value()
# An incremental hasher that can accept any number of writes.
@dataclass
class Hasher:
chunk_state: ChunkState
key_words: list[int]
cv_stack: list[list[int]]
flags: int
def _init(self, key_words: list[int], flags: int) -> None:
assert len(key_words) == 8
self.chunk_state = ChunkState(key_words, 0, flags)
self.key_words = key_words
self.cv_stack = []
self.flags = flags
# Construct a new `Hasher` for the regular hash function.
def __init__(self) -> None:
self._init(IV, 0)
# Construct a new `Hasher` for the keyed hash function.
@classmethod
def new_keyed(cls, key: bytes) -> Hasher:
keyed_hasher = cls()
key_words = words_from_little_endian_bytes(key)
keyed_hasher._init(key_words, KEYED_HASH)
return keyed_hasher
# Construct a new `Hasher` for the key derivation function. The context
# string should be hardcoded, globally unique, and application-specific.
@classmethod
def new_derive_key(cls, context: str) -> Hasher:
context_hasher = cls()
context_hasher._init(IV, DERIVE_KEY_CONTEXT)
context_hasher.update(context.encode("utf8"))
context_key = context_hasher.finalize(KEY_LEN)
context_key_words = words_from_little_endian_bytes(context_key)
derive_key_hasher = cls()
derive_key_hasher._init(context_key_words, DERIVE_KEY_MATERIAL)
return derive_key_hasher
# Section 5.1.2 of the BLAKE3 spec explains this algorithm in more detail.
def add_chunk_chaining_value(self, new_cv: list[int], total_chunks: int) -> None:
# This chunk might complete some subtrees. For each completed subtree,
# its left child will be the current top entry in the CV stack, and
# its right child will be the current value of `new_cv`. Pop each left
# child off the stack, merge it with `new_cv`, and overwrite `new_cv`
# with the result. After all these merges, push the final value of
# `new_cv` onto the stack. The number of completed subtrees is given
# by the number of trailing 0-bits in the new total number of chunks.
while total_chunks & 1 == 0:
new_cv = parent_cv(self.cv_stack.pop(), new_cv, self.key_words, self.flags)
total_chunks >>= 1
self.cv_stack.append(new_cv)
# Add input to the hash state. This can be called any number of times.
def update(self, input_bytes: bytes) -> None:
while input_bytes:
# If the current chunk is complete, finalize it and reset the
# chunk state. More input is coming, so this chunk is not ROOT.
if self.chunk_state.len() == CHUNK_LEN:
chunk_cv = self.chunk_state.output().chaining_value()
total_chunks = self.chunk_state.chunk_counter + 1
self.add_chunk_chaining_value(chunk_cv, total_chunks)
self.chunk_state = ChunkState(self.key_words, total_chunks, self.flags)
# Compress input bytes into the current chunk state.
want = CHUNK_LEN - self.chunk_state.len()
take = min(want, len(input_bytes))
self.chunk_state.update(input_bytes[:take])
input_bytes = input_bytes[take:]
# Finalize the hash and write any number of output bytes.
def finalize(self, length: int = OUT_LEN) -> bytes:
# Starting with the Output from the current chunk, compute all the
# parent chaining values along the right edge of the tree, until we
# have the root Output.
output = self.chunk_state.output()
parent_nodes_remaining = len(self.cv_stack)
while parent_nodes_remaining > 0:
parent_nodes_remaining -= 1
output = parent_output(
self.cv_stack[parent_nodes_remaining],
output.chaining_value(),
self.key_words,
self.flags,
)
return output.root_output_bytes(length)
# If this file is executed directly, hash standard input.
if __name__ == "__main__":
import sys
hasher = Hasher()
while buf := sys.stdin.buffer.read(65536):
hasher.update(buf)
print(hasher.finalize().hex()) |