nguyennghia0902 commited on
Commit
4f492f5
·
verified ·
1 Parent(s): b336ee6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -45
app.py CHANGED
@@ -1,46 +1,49 @@
1
- import streamlit as st
2
- from st_pages import Page, show_pages
3
-
4
- st.set_page_config(page_title="Question Answering", page_icon="🏠")
5
-
6
- show_pages(
7
- [
8
- Page("app.py", "Home", "🏠"),
9
- Page(
10
- "QuestionAnswering.py", "Question Answering", "📝"
11
- ),
12
- ]
13
- )
14
-
15
- st.title("Project in Text Mining and Application")
16
- st.header("Question Answering use a pre-trained model - ELECTRA")
17
- st.markdown(
18
- """
19
- **Team members:**
20
- | Student ID | Full Name | Email |
21
- | ---------- | ------------------------ | ------------------------------ |
22
- | 1712603 | Lê Quang Nam | 1712603@student.hcmus.edu.vn |
23
- | 19120582 | Nhựt Minh | 19120582@student.hcmus.edu.vn |
24
- | 19120600 | Bùi Nguyên Nghĩa | 19120600@student.hcmus.edu.vn |
25
- | 21120198 | Nguyễn Thị Lan Anh | 21120198@student.hcmus.edu.vn |
26
- """
27
- )
28
-
29
- st.header("The Need for Question Answering")
30
- st.markdown(
31
- """
32
- ...
33
- """
34
- )
35
-
36
- st.header("Technology used")
37
- st.markdown(
38
- """
39
- The ELECTRA model, specifically the "google/electra-small-discriminator" used here,
40
- is a deep learning model in the field of natural language processing (NLP) developed
41
- by Google. This model is an intelligent variation of the supervised learning model
42
- based on the Transformer architecture, designed to understand and process natural language efficiently.
43
- For this Question Answering task, we choose two related classes: ElectraTokenizerFast and
44
- TFElectraForQuestionAnswering to implement.
45
- """
 
 
 
46
  )
 
1
+ import streamlit as st
2
+ from st_pages import Page, show_pages
3
+
4
+ st.set_page_config(page_title="Question Answering", page_icon="🏠")
5
+
6
+ show_pages(
7
+ [
8
+ Page("app.py", "Home", "🏠"),
9
+ Page(
10
+ "SampleQA.py", "Sample in Dataset", "📝"
11
+ ),
12
+ Page(
13
+ "QuestionAnswering.py", "Question Answering", "📝"
14
+ ),
15
+ ]
16
+ )
17
+
18
+ st.title("Project in Text Mining and Application")
19
+ st.header("Question Answering use a pre-trained model - ELECTRA")
20
+ st.markdown(
21
+ """
22
+ **Team members:**
23
+ | Student ID | Full Name | Email |
24
+ | ---------- | ------------------------ | ------------------------------ |
25
+ | 1712603 | Quang Nam | 1712603@student.hcmus.edu.vn |
26
+ | 19120582 | Lê Nhựt Minh | 19120582@student.hcmus.edu.vn |
27
+ | 19120600 | Bùi Nguyên Nghĩa | 19120600@student.hcmus.edu.vn |
28
+ | 21120198 | Nguyễn Thị Lan Anh | 21120198@student.hcmus.edu.vn |
29
+ """
30
+ )
31
+
32
+ st.header("The Need for Question Answering")
33
+ st.markdown(
34
+ """
35
+ ...
36
+ """
37
+ )
38
+
39
+ st.header("Technology used")
40
+ st.markdown(
41
+ """
42
+ The ELECTRA model, specifically the "google/electra-small-discriminator" used here,
43
+ is a deep learning model in the field of natural language processing (NLP) developed
44
+ by Google. This model is an intelligent variation of the supervised learning model
45
+ based on the Transformer architecture, designed to understand and process natural language efficiently.
46
+ For this Question Answering task, we choose two related classes: ElectraTokenizerFast and
47
+ TFElectraForQuestionAnswering to implement.
48
+ """
49
  )