Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,46 +1,49 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from st_pages import Page, show_pages
|
3 |
-
|
4 |
-
st.set_page_config(page_title="Question Answering", page_icon="🏠")
|
5 |
-
|
6 |
-
show_pages(
|
7 |
-
[
|
8 |
-
Page("app.py", "Home", "🏠"),
|
9 |
-
Page(
|
10 |
-
"
|
11 |
-
),
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
24 |
-
|
|
25 |
-
|
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
46 |
)
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from st_pages import Page, show_pages
|
3 |
+
|
4 |
+
st.set_page_config(page_title="Question Answering", page_icon="🏠")
|
5 |
+
|
6 |
+
show_pages(
|
7 |
+
[
|
8 |
+
Page("app.py", "Home", "🏠"),
|
9 |
+
Page(
|
10 |
+
"SampleQA.py", "Sample in Dataset", "📝"
|
11 |
+
),
|
12 |
+
Page(
|
13 |
+
"QuestionAnswering.py", "Question Answering", "📝"
|
14 |
+
),
|
15 |
+
]
|
16 |
+
)
|
17 |
+
|
18 |
+
st.title("Project in Text Mining and Application")
|
19 |
+
st.header("Question Answering use a pre-trained model - ELECTRA")
|
20 |
+
st.markdown(
|
21 |
+
"""
|
22 |
+
**Team members:**
|
23 |
+
| Student ID | Full Name | Email |
|
24 |
+
| ---------- | ------------------------ | ------------------------------ |
|
25 |
+
| 1712603 | Lê Quang Nam | 1712603@student.hcmus.edu.vn |
|
26 |
+
| 19120582 | Lê Nhựt Minh | 19120582@student.hcmus.edu.vn |
|
27 |
+
| 19120600 | Bùi Nguyên Nghĩa | 19120600@student.hcmus.edu.vn |
|
28 |
+
| 21120198 | Nguyễn Thị Lan Anh | 21120198@student.hcmus.edu.vn |
|
29 |
+
"""
|
30 |
+
)
|
31 |
+
|
32 |
+
st.header("The Need for Question Answering")
|
33 |
+
st.markdown(
|
34 |
+
"""
|
35 |
+
...
|
36 |
+
"""
|
37 |
+
)
|
38 |
+
|
39 |
+
st.header("Technology used")
|
40 |
+
st.markdown(
|
41 |
+
"""
|
42 |
+
The ELECTRA model, specifically the "google/electra-small-discriminator" used here,
|
43 |
+
is a deep learning model in the field of natural language processing (NLP) developed
|
44 |
+
by Google. This model is an intelligent variation of the supervised learning model
|
45 |
+
based on the Transformer architecture, designed to understand and process natural language efficiently.
|
46 |
+
For this Question Answering task, we choose two related classes: ElectraTokenizerFast and
|
47 |
+
TFElectraForQuestionAnswering to implement.
|
48 |
+
"""
|
49 |
)
|