Spaces:
Sleeping
Sleeping
File size: 5,731 Bytes
8677efd b251db3 8677efd b251db3 8677efd b251db3 8677efd b251db3 8677efd b251db3 8677efd b251db3 8677efd b251db3 8677efd b251db3 8677efd ce4b6e7 8677efd b251db3 8677efd b251db3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import gradio as gr
import spaces
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
import base64
from PIL import Image, ImageDraw
from io import BytesIO
import re
models = {
"Qwen/Qwen2-VL-7B-Instruct": Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"),
"Qwen/Qwen2-VL-2B-Instruct": Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", torch_dtype="auto", device_map="auto")
}
processors = {
"Qwen/Qwen2-VL-7B-Instruct": AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct"),
"Qwen/Qwen2-VL-2B-Instruct": AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
}
def image_to_base64(image):
buffered = BytesIO()
image.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return img_str
def draw_bounding_boxes(image, bounding_boxes, outline_color="red", line_width=2):
draw = ImageDraw.Draw(image)
for box in bounding_boxes:
xmin, ymin, xmax, ymax = box
draw.rectangle([xmin, ymin, xmax, ymax], outline=outline_color, width=line_width)
return image
def rescale_bounding_boxes(bounding_boxes, original_width, original_height, scaled_width=1000, scaled_height=1000):
x_scale = original_width / scaled_width
y_scale = original_height / scaled_height
rescaled_boxes = []
for box in bounding_boxes:
xmin, ymin, xmax, ymax = box
rescaled_box = [
xmin * x_scale,
ymin * y_scale,
xmax * x_scale,
ymax * y_scale
]
rescaled_boxes.append(rescaled_box)
return rescaled_boxes
@spaces.GPU
def run_example(image, text_input, system_prompt, model_id="Qwen/Qwen2-VL-7B-Instruct"):
model = models[model_id].eval()
processor = processors[model_id]
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": f"data:image;base64,{image_to_base64(image)}"},
{"type": "text", "text": system_prompt},
{"type": "text", "text": text_input},
],
}
]
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
pattern = r'\[\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*\]'
matches = re.findall(pattern, str(output_text))
parsed_boxes = [[int(num) for num in match] for match in matches]
scaled_boxes = rescale_bounding_boxes(parsed_boxes, image.width, image.height)
return output_text, parsed_boxes, draw_bounding_boxes(image, scaled_boxes)
css = """
#output {
height: 500px;
overflow: auto;
border: 1px solid #ccc;
}
"""
default_system_prompt = "You are a helpfull assistant to detect objects in images. When asked to detect elements based on a description you return bounding boxes for all elements in the form of [xmin, ymin, xmax, ymax] whith the values beeing scaled to 1000 by 1000 pixels. When there are more than one result, answer with a list of bounding boxes in the form of [[xmin, ymin, xmax, ymax], [xmin, ymin, xmax, ymax], ...]."
with gr.Blocks(css=css) as demo:
gr.Markdown(
"""
# Qwen2-VL Object Detection Demo
Use the Qwen2-VL models to detect objects in an image. The 7B variant seems to work much better.
**Usage**: Use the keyword "detect" and a description of the target (see examples below).
""")
with gr.Tab(label="Qwen2-VL Input"):
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input Image", type="pil")
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="Qwen/Qwen2-VL-7B-Instruct")
system_prompt = gr.Textbox(label="System Prompt", value=default_system_prompt)
text_input = gr.Textbox(label="User Prompt")
submit_btn = gr.Button(value="Submit")
with gr.Column():
model_output_text = gr.Textbox(label="Model Output Text")
parsed_boxes = gr.Textbox(label="Parsed Boxes")
annotated_image = gr.Image(label="Annotated Image")
gr.Examples(
examples=[
["assets/2024_09_10_10_58_23.png", "Solve the question", default_system_prompt],
["assets/2024_09_10_10_58_40.png", "Solve the question", default_system_prompt],
["assets/2024_09_10_11_07_31.png", "Solve the question", default_system_prompt],
["assets/comics.jpeg", "Describe the since", default_system_prompt],
],
inputs=[input_img, text_input, system_prompt],
outputs=[model_output_text, parsed_boxes, annotated_image],
fn=run_example,
cache_examples=True,
label="Try examples"
)
submit_btn.click(run_example, [input_img, text_input, system_prompt, model_selector], [model_output_text, parsed_boxes, annotated_image])
demo.launch(debug=True) |