File size: 5,384 Bytes
8677efd
 
bcec177
8677efd
 
 
 
 
 
 
 
b251db3
 
753c319
bcec177
 
8677efd
 
 
 
bcec177
 
 
8677efd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcec177
8677efd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b251db3
8677efd
b251db3
 
 
8677efd
 
 
 
 
bcec177
8677efd
 
 
 
 
 
 
 
 
 
b251db3
753c319
b251db3
 
8677efd
 
 
753c319
 
8677efd
 
 
753c319
8677efd
 
 
bcec177
 
 
8462782
 
 
8677efd
4959b00
 
8677efd
 
 
 
 
4959b00
8677efd
b251db3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import gradio as gr
import spaces
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor, CLIPModel, BlipForConditionalGeneration, CLIPProcessor, BlipProcessor
from qwen_vl_utils import process_vision_info
import torch
import base64
from PIL import Image, ImageDraw
from io import BytesIO
import re


models = {
    "Qwen/Qwen2-VL-7B-Instruct": Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct", torch_dtype="auto", device_map="auto"),
    "Qwen/Qwen2-VL-2B-Instruct": Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", torch_dtype="auto", device_map="auto"),                                                                                  
    "openai/clip-vit-base-patch32": CLIPModel.from_pretrained("openai/clip-vit-base-patch32"),
    "Salesforce/blip-image-captioning-base": BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
}

processors = {
    "Qwen/Qwen2-VL-7B-Instruct": AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct"),
    "Qwen/Qwen2-VL-2B-Instruct": AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct"),
     "openai/clip-vit-base-patch32": CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32"),
    "Salesforce/blip-image-captioning-base": BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
}


def image_to_base64(image):
    buffered = BytesIO()
    image.save(buffered, format="PNG")
    img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
    return img_str


def draw_bounding_boxes(image, bounding_boxes, outline_color="red", line_width=2):
    draw = ImageDraw.Draw(image)
    for box in bounding_boxes:
        xmin, ymin, xmax, ymax = box
        draw.rectangle([xmin, ymin, xmax, ymax], outline=outline_color, width=line_width)
    return image


def rescale_bounding_boxes(bounding_boxes, original_width, original_height, scaled_width=1000, scaled_height=1000):
    x_scale = original_width / scaled_width
    y_scale = original_height / scaled_height
    rescaled_boxes = []
    for box in bounding_boxes:
        xmin, ymin, xmax, ymax = box
        rescaled_box = [
            xmin * x_scale,
            ymin * y_scale,
            xmax * x_scale,
            ymax * y_scale
        ]
        rescaled_boxes.append(rescaled_box)
    return rescaled_boxes


@spaces.GPU
def run_example(image, text_input, system_prompt, model_id="Qwen/Qwen2-VL-2B-Instruct"):
    model = models[model_id].eval()
    processor = processors[model_id]

    messages = [
        {
            "role": "user",
            "content": [
                {"type": "image", "image": f"data:image;base64,{image_to_base64(image)}"},
                {"type": "text", "text": system_prompt},
                {"type": "text", "text": text_input},
            ],
        }
    ]

    text = processor.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt",
    )
    inputs = inputs.to("cuda")

    generated_ids = model.generate(**inputs, max_new_tokens=128)
    generated_ids_trimmed = [
        out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
    ]
    output_text = processor.batch_decode(
        generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
    )
    print(output_text)
    pattern = r'\[\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*,\s*(\d+)\s*\]'
    matches = re.findall(pattern, str(output_text))
    parsed_boxes = [[int(num) for num in match] for match in matches]
    scaled_boxes = rescale_bounding_boxes(parsed_boxes, image.width, image.height)
    return output_text

css = """
  #output {
    height: 500px; 
    overflow: auto; 
    border: 1px solid #ccc; 
  }
"""
with gr.Blocks(css=css) as demo:
    gr.Markdown(
    """
    # Qwen2-VL Demo     
    """)
    with gr.Tab(label="Qwen2-VL Input"):
        with gr.Row():
            with gr.Column():
                input_img = gr.Image(label="Input Image", type="pil")
                model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="Qwen/Qwen2-VL-2B-Instruct")
                text_input = gr.Textbox(label="Prompt")
                submit_btn = gr.Button(value="Submit")
            with gr.Column():
                model_output_text = gr.Textbox(label="Model Output Text")
               

        gr.Examples(
            examples=[
                ["assets/2024_09_10_10_58_23.png", "Solve the question"],
                ["assets/2024_09_10_10_58_40.png", "Solve the question"],
                ["assets/2024_09_10_11_07_31.png", "Solve the question"],
                ["assets/comics.jpeg", "Describe the scene"],
                ["assets/rescaled_IMG_3644.PNG", "Describe the scene"],
                ["assets/rescaled_IMG_4028.PNG", "Describe the scene"]
            ],
            inputs=[input_img, text_input],
            outputs=[model_output_text],
            fn=run_example,
            cache_examples=True,
            label="Try examples"
        )

        submit_btn.click(run_example, [input_img, text_input, model_selector], [model_output_text])

demo.launch(debug=True)