import time
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification
model_id = "nicholasKluge/Aira-Instruct-PT-124M"
rewardmodel_id = "nicholasKluge/RewardModelPT"
toxicitymodel_id = "nicholasKluge/ToxicityModelPT"
device = "cuda" if torch.cuda.is_available() else "cpu"
model = AutoModelForCausalLM.from_pretrained(model_id)
rewardModel = AutoModelForSequenceClassification.from_pretrained(rewardmodel_id)
toxicityModel = AutoModelForSequenceClassification.from_pretrained(toxicitymodel_id)
model.eval()
rewardModel.eval()
toxicityModel.eval()
model.to(device)
rewardModel.to(device)
toxicityModel.to(device)
tokenizer = AutoTokenizer.from_pretrained(model_id)
rewardTokenizer = AutoTokenizer.from_pretrained(rewardmodel_id)
toxiciyTokenizer = AutoTokenizer.from_pretrained(toxicitymodel_id)
intro = """
## O que é `Aira`?
[`Aira`](https://huggingface.co/nicholasKluge/Aira-Instruct-PT-124M) é um `chatbot` projetado para simular a forma como um humano (especialista) se comportaria durante uma rodada de perguntas e respostas (Q&A). `Aira` tem muitas iterações, desde um chatbot de domínio fechado baseado em regras pré-definidas até um chatbot de domínio aberto atingido através do ajuste fino por instruções. `Aira` tem uma área de especialização que inclui tópicos relacionados com a ética da IA e a investigação sobre segurança da IA.
Desenvolvemos os nossos chatbots de conversação de domínio aberto através da geração de texto condicional/ajuste fino por instruções. Esta abordagem tem muitas limitações. Apesar de podermos criar um chatbot capaz de responder a perguntas sobre qualquer assunto, é difícil forçar o modelo a produzir respostas de boa qualidade. E por boa, queremos dizer texto **factual** e **não tóxico**. Isto leva-nos a dois dos problemas mais comuns quando lidando com modelos generativos utilizados em aplicações de conversação:
## Limitações
🤥 Modelos generativos podem perpetuar a geração de conteúdo pseudo-informativo, ou seja, informações falsas que podem parecer verdadeiras.
🤬 Em certos tipos de tarefas, modelos generativos podem produzir conteúdo prejudicial e discriminatório inspirado em estereótipos históricos.
## Uso Intendido
`Aira` destina-se apenas à investigação académica. Para mais informações, leia nossa [carta modelo](https://huggingface.co/nicholasKluge/Aira-Instruct-PT-124M) para ver como desenvolvemos `Aira`.
## Como essa demo funciona?
Para esta demonstração, utilizamos o modelo mais leve que treinámos (`Aira-Instruct-PT-124M`). Esta demonstração utiliza um [`modelo de recompensa`](https://huggingface.co/nicholasKluge/RewardModel) e um [`modelo de toxicidade`](https://huggingface.co/nicholasKluge/ToxicityModel) para avaliar a pontuação de cada resposta candidata, considerando o seu alinhamento com a mensagem do utilizador e o seu nível de toxicidade. A função de geração organiza as respostas candidatas por ordem da sua pontuação de recompensa e elimina as respostas consideradas tóxicas ou nocivas. Posteriormente, a função de geração devolve a resposta candidata com a pontuação mais elevada que ultrapassa o limiar de segurança, ou uma mensagem pré-estabelecida se não forem identificados candidatos seguros.
"""
disclaimer = """
**Isenção de responsabilidade:** Esta demonstração deve ser utilizada apenas para fins de investigação. Os moderadores não censuram a saída do modelo, e os autores não endossam as opiniões geradas por este modelo.
Se desejar apresentar uma reclamação sobre qualquer mensagem produzida por `Aira`, por favor contatar [nicholas@airespucrs.org](mailto:nicholas@airespucrs.org).
"""
with gr.Blocks(theme='freddyaboulton/dracula_revamped') as demo:
gr.Markdown("""
Aira Demo (Portuguese) 🤓💬
""")
gr.Markdown(intro)
chatbot = gr.Chatbot(label="Aira").style(height=500)
msg = gr.Textbox(label="Escreva uma pergunta ou instrução para Aira ...", placeholder="Olá Aira, como vai você?")
with gr.Accordion(label="Parâmetros ⚙️", open=True):
safety = gr.Radio(["On", "Off"], label="Proteção 🛡️", value="On", info="Ajuda a prevenir o modelo de gerar conteúdo tóxico.")
top_k = gr.Slider(minimum=10, maximum=100, value=30, step=5, interactive=True, label="Top-k", info="Controla o número de tokens de maior probabilidade a considerar em cada passo.")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.30, step=0.05, interactive=True, label="Top-p", info="Controla a probabilidade cumulativa dos tokens gerados.")
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.1, step=0.1, interactive=True, label="Temperatura", info="Controla a aleatoriedade dos tokens gerados.")
repetition_penalty = gr.Slider(minimum=1, maximum=2, value=1.1, step=0.1, interactive=True, label="Penalidade de Repetição", info="Valores mais altos auxiliam o modelo a evitar repetições na geração de texto.")
max_length = gr.Slider(minimum=10, maximum=500, value=200, step=10, interactive=True, label="Comprimento Máximo", info="Controla o comprimento máximo do texto gerado.")
smaple_from = gr.Slider(minimum=2, maximum=10, value=2, step=1, interactive=True, label="Amostragem por Rejeição", info="Controla o número de gerações a partir das quais o modelo de recompensa irá selecionar.")
clear = gr.Button("Limpar Conversa 🧹")
gr.Markdown(disclaimer)
def user(user_message, chat_history):
return gr.update(value=user_message, interactive=True), chat_history + [["👤 " + user_message, None]]
def generate_response(user_msg, top_p, temperature, top_k, max_length, smaple_from, repetition_penalty, safety, chat_history):
inputs = tokenizer(tokenizer.bos_token + user_msg + tokenizer.eos_token, return_tensors="pt").to(model.device)
generated_response = model.generate(**inputs,
bos_token_id=tokenizer.bos_token_id,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
repetition_penalty=repetition_penalty,
do_sample=True,
early_stopping=True,
renormalize_logits=True,
length_penalty=0.3,
top_k=top_k,
max_length=max_length,
top_p=top_p,
temperature=temperature,
num_return_sequences=smaple_from)
decoded_text = [tokenizer.decode(tokens, skip_special_tokens=True).replace(user_msg, "") for tokens in generated_response]
rewards = list()
toxicities = list()
for text in decoded_text:
reward_tokens = rewardTokenizer(user_msg, text,
truncation=True,
max_length=512,
return_token_type_ids=False,
return_tensors="pt",
return_attention_mask=True)
reward_tokens.to(rewardModel.device)
reward = rewardModel(**reward_tokens)[0].item()
toxicity_tokens = toxiciyTokenizer(user_msg + " " + text,
truncation=True,
max_length=512,
return_token_type_ids=False,
return_tensors="pt",
return_attention_mask=True)
toxicity_tokens.to(toxicityModel.device)
toxicity = toxicityModel(**toxicity_tokens)[0].item()
rewards.append(reward)
toxicities.append(toxicity)
toxicity_threshold = 5
ordered_generations = sorted(zip(decoded_text, rewards, toxicities), key=lambda x: x[1], reverse=True)
if safety == "On":
ordered_generations = [(x, y, z) for (x, y, z) in ordered_generations if z >= toxicity_threshold]
if len(ordered_generations) == 0:
bot_message = """Peço desculpa pelo incómodo, mas parece que não foi possível identificar respostas adequadas que cumpram as nossas normas de segurança. Infelizmente, isto indica que o conteúdo gerado pode conter elementos de toxicidade ou pode não ajudar a responder à sua mensagem. A sua opinião é valiosa para nós e esforçamo-nos por garantir uma conversa segura e construtiva. Não hesite em fornecer mais pormenores ou colocar quaisquer outras questões, e farei o meu melhor para o ajudar."""
else:
bot_message = ordered_generations[0][0]
chat_history[-1][1] = "🤖 "
for character in bot_message:
chat_history[-1][1] += character
time.sleep(0.005)
yield chat_history
response = msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
generate_response, [msg, top_p, temperature, top_k, max_length, smaple_from, repetition_penalty, safety, chatbot], chatbot
)
response.then(lambda: gr.update(interactive=True), None, [msg], queue=False)
msg.submit(lambda x: gr.update(value=''), None,[msg])
clear.click(lambda: None, None, chatbot, queue=False)
demo.queue()
demo.launch()